Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dpo4 is hindered in extending a G·T mismatch by a reverse wobble

Abstract

The ability or inability of a DNA polymerase to extend a mispair directly affects the establishment of genomic mutations. We report here kinetic analyses of the ability of Dpo4, a Y-family polymerase from Sulfolobus solfataricus, to extend from all mispairs opposite a template G or T. Dpo4 is equally inefficient at extending these mispairs, which include, surprisingly, a G·T mispair expected to conform closely to Watson-Crick geometry. To elucidate the basis of this, we solved the structure of Dpo4 bound to G·T-mispaired primer template in the presence of an incoming nucleotide. As a control, we also determined the structure of Dpo4 bound to a matched A-T base pair at the primer terminus. The structures offer a basis for the low efficiency of Dpo4 in extending a G·T mispair: a reverse wobble that deflects the primer 3′-OH away from the incoming nucleotide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dpo4-catalyzed extension of a G·T primer–terminal mispair.
Figure 2: Dpo4 in complex with matched and mismatched primer termini.
Figure 3

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Goodman, M.F. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu. Rev. Biochem. 71, 17–50 (2002).

    Article  CAS  Google Scholar 

  2. Prakash, S. & Prakash, L. Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev. 16, 1872–1883 (2002).

    Article  CAS  Google Scholar 

  3. Doublie, S., Sawaya, M.R. & Ellenberger, T. An open and closed case for all polymerases. Structure 7, R31–R35 (1999).

    Article  CAS  Google Scholar 

  4. Mendelman, L.V., Petruska, J. & Goodman, M.F. Base mispair extension kinetics. Comparison of DNA polymerase α and reverse transcriptase. J. Biol. Chem. 265, 2338–2346 (1990).

    CAS  Google Scholar 

  5. Huang, M.-M., Arnheim, N. & Goodman, M.F. Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res. 20, 4567–4573 (1992).

    Article  CAS  Google Scholar 

  6. Joyce, C.M., Sun, X.C. & Grindley, N.D. Reactions at the polymerase active site that contribute to the fidelity of Escherichia coli DNA polymerase I (Klenow fragment). J. Biol. Chem. 267, 24485–24500 (1992).

    CAS  PubMed  Google Scholar 

  7. Washington, M.T., Johnson, R.E., Prakash, S. & Prakash, L. Mismatch extension ability of yeast and human DNA polymerase η. J. Biol. Chem. 276, 2263–2266 (2001).

    Article  CAS  Google Scholar 

  8. Vaisman, A., Tissier, A., Frank, E.G., Goodman, M.F. & Woodgate, R. Human DNA polymerase ι promiscuous mismatch extension. J. Biol. Chem. 276, 30615–30622 (2001).

    Article  CAS  Google Scholar 

  9. Washington, M.T., Johnson, R.E., Prakash, L. & Prakash, S. Human DINB1-encoded DNA polymerase κ is a promiscuous extender of mispaired primer termini. Proc. Nat. Acad. Sci. USA 99, 1910–1914 (2002).

    Article  CAS  Google Scholar 

  10. Haracska, L., Prakash, L. & Prakash, S. Role of human DNA polymerase κ as an extender in translesion synthesis. Proc. Nat. Acad. Sci. USA 99, 16000–16005 (2002).

    Article  CAS  Google Scholar 

  11. Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107, 91–102 (2001).

    Article  CAS  Google Scholar 

  12. Ling, H., Boudsocq, F., Plosky, B.S., Woodgate, R. & Yang, W. Replication of cis-syn thymine dimer at atomic resolution. Nature 242, 1083–1087 (2003).

    Article  Google Scholar 

  13. Steitz, T.A. DNA polymerases: structural diversity and common mechanisms. J. Biol. Chem. 274, 17395–17398 (1999).

    Article  CAS  Google Scholar 

  14. Trincao, J. et al. Structure of the catalytic core of S. cerevisiae DNA polymerase η: implications for translesion DNA synthesis. Mol. Cell 8, 417–426 (2001).

    Article  CAS  Google Scholar 

  15. Zhou, B.-L., Pata, J.D. & Steitz, T.A. Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. Mol. Cell 8, 427–437 (2001).

    Article  CAS  Google Scholar 

  16. Silvian, L.F., Toth, E.A., Pham, P., Goodman, M.F. & Ellenberger, T. Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus . Nat. Struct. Biol. 8, 984–989 (2001).

    Article  CAS  Google Scholar 

  17. Johnson, R.E., Trincao, J., Aggarwal, A.K., Prakash, S. & Prakash, L. Deoxynucleotide triphosphate binding mode conserved in Y family DNA polymerases. Mol. Cell. Biol. 23, 3008–3012 (2003).

    Article  CAS  Google Scholar 

  18. Leontis, N.B., Stombaugh, J. & Westhof, E. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30, 3497–3531 (2002).

    Article  CAS  Google Scholar 

  19. Hunter, W.N., Kneale, G., Brown, T., Rabinovich, D. & Kennard, O. Refined crystal structure of an actanucleotide duplex with G·T mismatched base-pairs. J. Mol. Biol. 190, 605–618 (1986).

    Article  CAS  Google Scholar 

  20. Hare, D., Shapiro, L. & Patel, D.J. Wobble dG × dT pairing in right-handed DNA: solution conformation of the d(C-G-T-G-A-A-T-T-C-G-C-G) duplex deduced from distance geometry analysis of nuclear Overhauser effect spectra. Biochemistry 25, 7445–7456 (1986).

    Article  CAS  Google Scholar 

  21. Mooers, B.H., Eichman, B.F. & Ho, P.S. The structures and relative stabilities of d(G × G) reverse Hoogsteen, d(G × T) reverse wobble, and d(G × C) reverse Watson-Crick base-pairs in DNA crystals. J. Mol. Biol. 269, 796–810 (1997).

    Article  CAS  Google Scholar 

  22. Perrino, F.W. & Loeb, L.A. Differential extension of 3′ mispairs is a major contribution to the high fidelity of calf thymus DNA polymerase α. J. Biol. Chem. 264, 2898–2905 (1989).

    CAS  PubMed  Google Scholar 

  23. Varani, G., Cheong, C. & Tinoco, I. Jr. Structure of an unusually stable RNA hairpin. Biochemistry 30, 3280–3289 (1991).

    Article  CAS  Google Scholar 

  24. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905–920 (2000).

    Article  CAS  Google Scholar 

  25. Bullock, T.L., Sherlin, L.D. & Perona, J.J. Tertiary core rearrangements in a tight binding transfer RNA aptamer. Nat. Struct. Biol. 7, 497–504 (2000).

    Article  CAS  Google Scholar 

  26. Klinck, R. et al. A potential RNA drug target in the hepatitis C virus internal ribosomal entry site. RNA 6, 1423–1431 (2000).

    Article  CAS  Google Scholar 

  27. Johnson, R.E., Yu, S.-L., Prakash, S. & Prakash, L. Yeast DNA polymerase zeta (ζ) is essential for error-free replication past thymine glycol. Genes Dev. 17, 77–87 (2003).

    Article  CAS  Google Scholar 

  28. Johnson, R.E., Washington, M.T., Prakash, S. & Prakash, L. Fidelity of human DNA polymerase η. J. Biol. Chem. 275, 7447–7450 (2000).

    Article  CAS  Google Scholar 

  29. Aggarwal, A.K. Crystallization of DNA binding proteins with oligodeoxynucleotides. Methods 1, 83–90 (1990).

    Article  CAS  Google Scholar 

  30. Brunger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  31. Jones, A.T., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  32. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the Advanced Photon Source and the National Synchrotron Light Source for facilitating X-ray data collection. We thank T. Edwards for help with data collection and processing. This was supported was supported by US National Institutes of Health grant CA094006 (A.K.A. and L.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneel K Aggarwal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trincao, J., Johnson, R., Wolfle, W. et al. Dpo4 is hindered in extending a G·T mismatch by a reverse wobble. Nat Struct Mol Biol 11, 457–462 (2004). https://doi.org/10.1038/nsmb755

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb755

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing