Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d

Abstract

The tandem zinc finger (TZF) domain of the protein TIS11d binds to the class II AU-rich element (ARE) in the 3′ untranslated region (3′ UTR) of target mRNAs and promotes their deadenylation and degradation. The NMR structure of the TIS11d TZF domain bound to the RNA sequence 5′-UUAUUUAUU-3′ comprises a pair of novel CCCH fingers of type CX8CX5CX3H separated by an 18-residue linker. The two TIS11d zinc fingers bind in a symmetrical fashion to adjacent 5′-UAUU-3′ subsites on the single-stranded RNA via a combination of electrostatic and hydrogen-bonding interactions, with intercalative stacking between conserved aromatic side chains and the RNA bases. Sequence specificity in RNA recognition is achieved by a network of intermolecular hydrogen bonds, mostly between TIS11d main-chain functional groups and the Watson-Crick edges of the bases. The TIS11d structure provides insights into the RNA-binding functions of this large family of CCCH zinc finger proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment of TIS11d proteins.
Figure 2: NMR spectra of TIS11d protein free and bound to RNA.
Figure 3: Solution structure of the RNA complex of TIS11d.
Figure 4: Molecular recognition of RNA by TIS11d and hydrogen bonding between TIS11d and RNA.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Blackshear, P.J. Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem. Soc. Trans. 30, 945–952 (2002).

    Article  CAS  Google Scholar 

  2. Ming, X.F., Stoecklin, G., Lu, M., Looser, R. & Moroni, C. Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol. Cell. Biol. 21, 5778–5789 (2001).

    Article  CAS  Google Scholar 

  3. Varnum, B.C., Ma, Q.F., Chi, T.H., Fletcher, B. & Herschman, H.R. The TIS11 primary response gene is a member of a gene family that encodes proteins with a highly conserved sequence containing an unusual Cys-His repeat. Mol. Cell. Biol. 11, 1754–1758 (1991).

    Article  CAS  Google Scholar 

  4. Lai, W.S., Stumpo, D.J. & Blackshear, P.J. Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. J. Biol. Chem. 265, 16556–16563 (1990).

    CAS  PubMed  Google Scholar 

  5. DuBois, R.N., McLane, M.W., Ryder, K., Lau, L.F. & Nathans, D. A growth factor-inducible nuclear protein with a novel cysteine/histidine repetitive sequence. J. Biol. Chem. 265, 19185–19191 (1990).

    CAS  PubMed  Google Scholar 

  6. Lai, W.S., Carballo, E., Thorn, J.M., Kennington, E.A. & Blackshear, P.J. Interactions of CCCH zinc finger proteins with mRNA-binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. J. Biol. Chem. 275, 17827–17837 (2000).

    Article  CAS  Google Scholar 

  7. Carballo, E., Lai, W.S. & Blackshear, P.J. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281, 1001–1005 (1998).

    Article  CAS  Google Scholar 

  8. Taylor, G.A. et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4, 445–454 (1996).

    Article  CAS  Google Scholar 

  9. Chen, C.Y. et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451–464 (2001).

    Article  CAS  Google Scholar 

  10. Lai, W.S., Kennington, E.A. & Blackshear, P.J. Interactions of CCCH zinc finger proteins with mRNA. Non-binding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J. Biol. Chem. 277, 9606–9613 (2002).

    Article  CAS  Google Scholar 

  11. Worthington, M.T., Amann, B.T., Nathans, D. & Berg, J.M. Metal binding properties and secondary structure of the zinc-binding domain of Nup475. Proc. Natl. Acad. Sci. USA 93, 13754–13759 (1996).

    Article  CAS  Google Scholar 

  12. Lai, W.S. et al. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor α mRNA. Mol. Cell. Biol. 19, 4311–4323 (1999).

    Article  CAS  Google Scholar 

  13. Worthington, M.T. et al. RNA binding properties of the AU-rich element-binding recombinant Nup475/TIS11/tristetraprolin protein. J. Biol. Chem. 277, 48558–48564 (2002).

    Article  CAS  Google Scholar 

  14. Blackshear, P.J. et al. Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with AU-rich element-containing RNA substrates. J. Biol. Chem. 278, 19947 (2003).

    Article  CAS  Google Scholar 

  15. De Guzman, R.N. et al. Structure of the HIV-1 nucleocapsid protein bound to the SL3 Psi-RNA recognition element. Science 279, 384–388 (1998).

    Article  CAS  Google Scholar 

  16. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  17. Amann, B.T., Worthington, M.T. & Berg, J.M. A Cys3His zinc-binding domain from Nup475/tristetraprolin: a novel fold with a disklike structure. Biochemistry 42, 217–221 (2003).

    Article  CAS  Google Scholar 

  18. Chen, C.Y. & Shyu, A.B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci 20, 465–470 (1995).

    Article  CAS  Google Scholar 

  19. Wang, X. & Tanaka Hall, T.M. Structural basis for recognition of AU-rich element RNA by the HuD protein. Nat. Struct. Biol. 8, 141–145 (2001).

    Article  CAS  Google Scholar 

  20. Handa, N. et al. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature 398, 579–585 (1999).

    Article  CAS  Google Scholar 

  21. Deo, R.C., Bonanno, J.B., Sonenberg, N. & Burley, S.K. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98, 835–845 (1999).

    Article  CAS  Google Scholar 

  22. Guedes, S. & Priess, J.R. The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component. Development 124, 731–739 (1997).

    CAS  PubMed  Google Scholar 

  23. Tabara, H., Hill, R.J., Mello, C.C., Priess, J.R. & Kohara, Y. pos-1 encodes a cytoplasmic zinc-finger protein essential for germline specification in C. elegans. Development 126, 1–11 (1999).

    CAS  PubMed  Google Scholar 

  24. Reese, K.J., Dunn, M.A., Waddle, J.A. & Seydoux, G. Asymmetric segregation of PIE-1 in C. elegans is mediated by two complementary mechanisms that act through separate PIE-1 protein domains. Mol. Cell 6, 445–455 (2000).

    Article  CAS  Google Scholar 

  25. Bai, C.Y. & Tolias, P.P. Cleavage of RNA hairpins mediated by a developmentally regulated CCCH zinc finger protein. Mol. Cell. Biol. 16, 6661–6667 (1996).

    Article  CAS  Google Scholar 

  26. Hendriks, E.F., Robinson, D.R., Hinkins, M. & Matthews, K.R. A novel CCCH protein which modulates differentiation of Trypanosoma brucei to its procyclic form. EMBO J. 20, 6700–6711 (2001).

    Article  CAS  Google Scholar 

  27. Wishart, D.S. et al. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 6, 135–140 (1995).

    Article  CAS  Google Scholar 

  28. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  29. Johnson, B.A. & Blevins, R.A. NMRView: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 604–613 (1994).

    Article  Google Scholar 

  30. Wittekind, M. & Mueller, L. HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the α- and β-carbon resonances in proteins. J. Magn. Reson. 101, 201–205 (1993).

    Article  CAS  Google Scholar 

  31. Grzesiek, S. & Bax, A. Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc. 114, 6291–6293 (1992).

    Article  CAS  Google Scholar 

  32. Grzesiek, S. & Bax, A. Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J. Magn. Reson. 96, 432–440 (1992).

    CAS  Google Scholar 

  33. Grzesiek, S., Anglister, J. & Bax, A. Correlation of backbone amide and aliphatic side chain resonances in 13C/15N-enriched proteins by isotropic mixing of 13C magnetization. J. Magn. Reson. B 101, 114–119 (1993).

    Article  CAS  Google Scholar 

  34. Bax, A., Clore, G.M. & Gronenborn, A.M. 1H-1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J. Magn. Reson. 88, 425–431 (1990).

    CAS  Google Scholar 

  35. Yamazaki, T., Forman-Kay, J.D. & Kay, L.E. Two-dimensional NMR experiments for correlating 13Cβ and 1Hδ/ε chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings. J. Am. Chem. Soc. 115, 11054–11055 (1993).

    Article  CAS  Google Scholar 

  36. Vuister, G.W., Delaglio, F. & Bax, A. The use of 1JCαHα coupling constants as a probe for protein backbone conformation. J. Biomol. NMR 3, 67–80 (1993).

    CAS  PubMed  Google Scholar 

  37. Archer, S.J., Ikura, M., Torchia, D.A. & Bax, A. An alternative 3D NMR technique for correlating backbone 15N with side chain Hβ resonances in larger proteins. J. Magn. Reson. 95, 636–641 (1991).

    CAS  Google Scholar 

  38. Zwahlen, C. et al. Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: Application to a bacteriophage λ N-peptide/boxB RNA complex. J. Am. Chem. Soc. 119, 6711–6721 (1997).

    Article  CAS  Google Scholar 

  39. Grzesiek, S., Kuboniwa, H., Hinck, A.P. & Bax, A. Multiple-quantum line narrowing for measurement of Hα-Hβ J coupling in isotopically enriched proteins. J. Am. Chem. Soc. 117, 5312–5315 (1995).

    Article  CAS  Google Scholar 

  40. Grzesiek, S., Vuister, G.W. & Bax, A. A simple and sensitive experiment for measurement of JCC couplings between backbone carbonyl and methyl carbons in isotopically enriched proteins. J. Biomol. NMR 3, 487–493 (1993).

    CAS  PubMed  Google Scholar 

  41. Vuister, G.W., Wang, A.C. & Bax, A. Measurement of three-bond nitrogen-carbon J couplings in proteins uniformly enriched in 15N and 13C. J. Am. Chem. Soc. 115, 5334–5335 (1993).

    Article  CAS  Google Scholar 

  42. Hansen, M.R., Mueller, L. & Pardi, A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5, 1065–1074 (1998).

    Article  CAS  Google Scholar 

  43. Wang, Y.X. et al. Simultaneous measurement of 1H-15N, 1H-13C', and 15N-13C' dipolar couplings in a perdeuterated 30 kDa protein dissolved in a dilute liquid crystalline phase. J. Am. Chem. Soc. 120, 7385–7386 (1998).

    Article  CAS  Google Scholar 

  44. Yang, D., Tolman, J.R., Goto, N.K. & Kay, L.E. An HNCO-based pulse scheme for the measurement of 13Cα-1Hα one-bond dipolar couplings in 15N, 13C labeled proteins. J. Biomol. NMR 12, 325–332 (1998).

    Article  CAS  Google Scholar 

  45. Güntert, P., Mumenthaler, C. & Wüthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  Google Scholar 

  46. Duggan, B.M., Legge, G.B., Dyson, H.J. & Wright, P.E. SANE (structure assisted NOE evaluation): an automated model-based approach for NOE assignment. J. Biomol. NMR 19, 321–329 (2001).

    Article  CAS  Google Scholar 

  47. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  48. Tsui, V. & Case, D.A. Molecular simulations of nucleic acids using a generalized Born solvation model. J. Am. Chem. Soc. 122, 2489–2498 (2000).

    Article  CAS  Google Scholar 

  49. Dosset, P., Hus, J.C., Marion, D. & Blackledge, M. A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings. J. Biomol. NMR 20, 223–231 (2001).

    Article  CAS  Google Scholar 

  50. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  51. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  52. Laskowski, R.A., Rullmann, J.A.C., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Lee, M. Hennig, J. Williamson and D. Case for invaluable discussions, J. Chung and G. Kroon for assistance with NMR experiments, and M. Allen and L. Tennant for technical assistance. This work was supported by a grant from the US National Institutes of Health and by the Skaggs Institute for Chemical Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E Wright.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudson, B., Martinez-Yamout, M., Dyson, H. et al. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol 11, 257–264 (2004). https://doi.org/10.1038/nsmb738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing