Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1

Abstract

Recruitment of the GRIP domain golgins to the trans-Golgi network is mediated by Arl1, a member of the ARF/Arl small GTPase family, through interaction between their GRIP domains and Arl1-GTP. The crystal structure of Arl1-GTP in complex with the GRIP domain of golgin-245 shows that Arl1-GTP interacts with the GRIP domain predominantly in a hydrophobic manner, with the switch II region conferring the main recognition surface. The involvement of the switch and interswitch regions in the interaction between Arl1-GTP and GRIP accounts for the specificity of GRIP domain for Arl1-GTP. Mutations that abolished the Arl1-mediated Golgi localization of GRIP domain golgins have been mapped on the interface between Arl1-GTP and GRIP. Notably, the GRIP domain forms a homodimer in which each subunit interacts separately with one Arl1-GTP. Mutations disrupting the GRIP domain dimerization also abrogated its Golgi targeting, suggesting that the dimeric form of GRIP domain is a functional unit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Arl1–GRIP complex.
Figure 2: Arl1–GRIP and GRIP–GRIP interfaces.
Figure 3: Sequence alignment of Arls and GRIP domains.
Figure 4: Cellular localization and yeast two-hybrid assays of golgin-245 GRIP domain mutants.
Figure 5: Structural comparisons of Arl1-GTP in the Arl1–GRIP complex with other Arls.
Figure 6: Structural comparisons of the complexes of Arl1–GRIP, ARF1–GAT and Arl2–PDEδ.
Figure 7: Schematic model of recruitment of Golgin-245 to the Golgi membrane by Arl1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Carter, L.L., Redelmeier, T.E., Woollenweber, L.A. & Schmid, S.L. Multiple GTP-binding proteins participate in clathrin-coated vesicle-mediated endocytosis. J. Cell Biol. 120, 37–45 (1993).

    Article  CAS  Google Scholar 

  2. Schwaninger, R., Plutner, H., Bokoch, G.M. & Balch, W.E. Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes. J. Cell Biol. 119, 1077–1096 (1992).

    Article  CAS  Google Scholar 

  3. Boman, A.L. & Kahn, R.A. Arf proteins: the membrane traffic police? Trends Biochem. Sci. 20, 147–150 (1995).

    Article  CAS  Google Scholar 

  4. Lowe, S.L., Wong, S.H. & Hong, W. The mammalian ARF-like protein 1 (Arl1) is associated with the Golgi complex. J. Cell Sci. 109, 209–220 (1996).

    CAS  PubMed  Google Scholar 

  5. Schurmann, A. et al. Cloning of two novel ADP-ribosylation factor-like proteins and Characterization of their differential expression in 3T3-L1 cells. J. Biol. Chem. 269, 15683–15688 (1994).

    CAS  PubMed  Google Scholar 

  6. Lu, L., Horstmann, H., Ng, C. & Hong, W.J. Regulation of Golgi structure and function by ARF-like protein 1 (Arl1). J. Cell Sci. 114, 4543–4555 (2001).

    CAS  PubMed  Google Scholar 

  7. Van Valkenburgh, H., Shern, J.F., Sharer, J.D., Zhu, X. & Kahn, R.A. ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: characterizing ARL1-binding proteins. J. Biol. Chem. 276, 22826–22837 (2001).

    Article  CAS  Google Scholar 

  8. Bhamidipati, A., Lewis, S.A. & Cowan, N.J. ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin. J. Cell Biol. 149, 1087–1096 (2000).

    Article  CAS  Google Scholar 

  9. Fleming, J.A., Vega, L.R. & Solomon, F. Function of tubulin binding proteins in vivo. Genetics 156, 69–80 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cuvillier, A. et al. LdARL-3A, a Leishmania promastigote-specific ADP-ribosylation factor-like protein, is essential for flagellum integrity. J. Cell Sci. 113, 2065–2074 (2000).

    CAS  PubMed  Google Scholar 

  11. Antoshechkin, I. & Han, M. The C. elegans evl-20 gene is a homolog of the small GTPase ARL2 and regulates cytoskeleton dynamics during cytokinesis and morphogenesis. Dev. Cell 2, 579–591 (2002).

    Article  CAS  Google Scholar 

  12. Tzafrir, I. et al. Diversity of TITAN functions in Arabidopsis seed development. Plant Physiol. 128, 38–51 (2002).

    Article  CAS  Google Scholar 

  13. Grayson, C. et al. Localization in the human retina of the X-linked retinitis pigmentosa protein RP2, its homologue cofactor C and the RP2 interacting protein Arl3. Hum. Mol. Genet. 11, 3065–3074 (2002).

    Article  CAS  Google Scholar 

  14. Sharer, J.D. & Kahn, R.A. The ARF-like 2 (ARL2)-binding protein, BART. Purification, cloning, and initial characterization. J. Biol. Chem. 274, 27553–27561 (1999).

    Article  CAS  Google Scholar 

  15. Ingley, E. et al. A novel ADP-ribosylation like factor (ARL-6), interacts with the protein-conducting channel SEC61β subunit. FEBS Lett. 459, 69–74 (1999).

    Article  CAS  Google Scholar 

  16. Jacobs, S. et al. ADP-ribosylation factor (ARF)-like 4, 6, and 7 represent a subgroup of the ARF family characterization by rapid nucleotide exchange and a nuclear localization signal. FEBS Lett. 456, 384–388 (1999).

    Article  CAS  Google Scholar 

  17. Lin, C.Y. et al. ARL4, an ARF-like protein that is developmentally regulated and localized to nuclei and nucleoli. J. Biol. Chem. 275, 37815–37823 (2000).

    Article  CAS  Google Scholar 

  18. Schurmann, A. et al. Reduced sperm count and normal fertility in male mice with targeted disruption of the ADP-ribosylation factor-like 4 (Arl4) gene. Mol. Cell Biol. 22, 2761–2768 (2002).

    Article  CAS  Google Scholar 

  19. Lin, C.Y., Li, C.C., Huang, P.H. & Lee, F.J. A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. J. Cell Sci. 115, 4433–4445 (2002).

    Article  CAS  Google Scholar 

  20. Buttitta, L., Tanaka, T.S., Chen, A.E., Ko, M.S. & Fan, C.M. Microarray analysis of somitogenesis reveals novel targets of different WNT signaling pathways in the somitic mesoderm. Dev. Biol. 258, 91–104 (2003).

    Article  CAS  Google Scholar 

  21. Munro, S. & Nichols, B.J. The GRIP domain—a novel Golgi-targeting domain found in several coiled-coil proteins. Curr. Biol. 9, 377–380 (1999).

    Article  CAS  Google Scholar 

  22. Kjer-Nielsen, L., Teasdale, R.D., van Vliet, C. & Gleeson, P.A. A novel Golgi-localisation domain shared by a class of coiled-coil peripheral membrane proteins. Curr. Biol. 9, 385–388 (1999).

    Article  CAS  Google Scholar 

  23. Barr, F.A. A novel Rab6-interacting domain defines a family of Golgi-targeted coiled-coil proteins. Curr. Biol. 9, 381–384 (1999).

    Article  CAS  Google Scholar 

  24. Luke, M.R., Kjer-Nielsen, L., Brown, D.L., Stow, J.L. & Gleeson, P.A. GRIP domain-mediated targeting of two new coiled-coil proteins, GCC88 and GCC185, to sub-compartments of the trans-Golgi network. J. Biol. Chem. 278, 4216–4226 (2003).

    Article  CAS  Google Scholar 

  25. Gillingham, A.K. & Munro, S. Long coiled-coil proteins and membrane traffic. Biochim. Biophys. Acta 1641, 71–85 (2003).

    Article  CAS  Google Scholar 

  26. Brown, D.L. et al. The GRIP domain is a specific targeting sequence for a population of trans-Golgi network derived tubulo-vesicular carriers 1. Traffic 2, 336–344 (2001).

    Article  CAS  Google Scholar 

  27. Kjer-Nielsen, L., van Vliet, C., Erlich, R., Toh, B.H. & Gleeson, P.A. The Golgi-targeting sequence of the peripheral membrane protein p230. J. Cell Sci. 112, 1645–1654 (1999).

    CAS  PubMed  Google Scholar 

  28. Lu, L. & Hong, W. Interaction of Arl1-GTP with GRIP domains recruits auto- antigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol. Biol. Cell 14, 3767–3781 (2003).

    Article  CAS  Google Scholar 

  29. Panic, B., Whyte, J.R. & Munro, S. The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr. Biol. 13, 405–410 (2003).

    Article  CAS  Google Scholar 

  30. Setty, S.R., Shin, M.E., Yoshino, A., Marks, M.S. & Burd, C.G. Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr. Biol. 13, 401–404 (2003).

    Article  CAS  Google Scholar 

  31. Jackson, C.L. Membrane traffic: Arl GTPases get a GRIP on the Golgi. Curr. Biol. 13, R174–176 (2003).

    Article  CAS  Google Scholar 

  32. Paduch, M., Jelen, F. & Otlewski, J. Structure of small G proteins and their regulators. Acta Biochim Pol. 48, 829–850 (2001).

    CAS  PubMed  Google Scholar 

  33. Amor, J.C. et al. Structures of yeast ARF2 and ARL1: distinct roles for the N terminus in the structure and function of ARF family GTPases. J. Biol. Chem. 276, 42477–42484 (2001).

    Article  CAS  Google Scholar 

  34. Hillig, R.C. et al. Structural and biochemical properties show ARL3-GDP as a distinct GTP binding protein. Struct. Fold Des. 8, 1239–1245 (2000).

    Article  CAS  Google Scholar 

  35. Hanzal-Bayer, M., Renault, L., Roversi, P., Wittinghofer, A. & Hillig, R.C. The complex of Arl2-GTP and PDE delta: from structure to function. EMBO J. 21, 2095–2106 (2002).

    Article  CAS  Google Scholar 

  36. Amor, J.C., Harrison, D.H., Kahn, R.A. & Ringe, D. Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704–708 (1994).

    Article  CAS  Google Scholar 

  37. Greasley, S.E. et al. The structure of rat ADP-ribosylation factor-1 (ARF-1) complexed to GDP determined from two different crystal forms. Nat. Struct. Biol. 2, 797–806 (1995).

    Article  CAS  Google Scholar 

  38. Goldberg, J. Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237–248 (1998).

    Article  CAS  Google Scholar 

  39. Pasqualato, S., Menetrey, J., Franco, M. & Cherfils, J. The structural GDP/GTP cycle of human Arf6. EMBO Rep. 2, 234–238 (2001).

    Article  CAS  Google Scholar 

  40. Collins, B.M., Watson, P.J. & Owen, D.J. The structure of the GGA1-GAT domain reveals the molecular basis for ARF binding and membrane association of GGAs. Dev. Cell 4, 321–432 (2003).

    Article  CAS  Google Scholar 

  41. Suer, S., Misra, S., Saidi, L.F. & Hurley, J.H. Structure of the GAT domain of human GGA1: a syntaxin amino-terminal domain fold in an endosomal trafficking adaptor. Proc. Natl. Acad. Sci. 100, 4451–4456 (2003).

    Article  CAS  Google Scholar 

  42. Shiba, T. et al. Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport. Nat. Struct. Biol. 10, 386–393 (2003).

    Article  CAS  Google Scholar 

  43. Otwinowski, Z. In Data Collection and Processing (eds. Sawyer, N.I.L. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK, 1993).

    Google Scholar 

  44. Navaza, J. & Saludjian, P. AMoRe: an automated molecular replacement program package. Methods Enzymol. 276, 581–594 (1997).

    Article  CAS  Google Scholar 

  45. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  46. Jones, T.A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 277, 173–208 (1997).

    Article  CAS  Google Scholar 

  47. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  48. Murshudov, G.N, Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  49. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  50. Gouet, P. & Courcelle, E. ENDscript: a workflow to display sequence and structure information. Bioinformatics 18, 767–768 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Tucker at BW7A (European Molecular Biology Laboratory, Hamburg, Germany) for assistance and access to synchrotron radiation facilities, and M.J. Fritzler and E.K.L. Chan for providing the full-length cDNA of human golgin-97. This work is financially supported by the Agency for Science, Technology and Research (A*STAR) in Singapore (to W.H. and H.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanjin Hong or Haiwei Song.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Lu, L., Hong, W. et al. Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1. Nat Struct Mol Biol 11, 86–94 (2004). https://doi.org/10.1038/nsmb714

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb714

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing