Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chromatin remodeling: insights and intrigue from single-molecule studies

Abstract

Chromatin remodelers are ATP-hydrolyzing machines specialized to restructure, mobilize or eject nucleosomes, allowing regulated exposure of DNA in chromatin. Recently, remodelers have been analyzed using single-molecule techniques in real time, revealing them to be complex DNA-pumping machines. The results both support and challenge aspects of current models of remodeling, supporting the idea that the remodeler translocates or pumps DNA loops into and around the nucleosome, while also challenging earlier concepts about loop formation, the character of the loop and how it propagates. Several complex behaviors were observed, such as reverse translocation and long translocation bursts of the remodeler, without appreciable DNA twist. This review presents and discusses revised models for nucleosome sliding and ejection that integrate this new information with the earlier biochemical studies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Modes of nucleosome remodeling.

Katie Ris-Vicari

Figure 2: Single-molecule methods for observing remodeler translocation.
Figure 3: Models for DNA movement around nucleosomes.

Katie Ris-Vicari

References

  1. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  2. Kornberg, R.D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    Article  CAS  Google Scholar 

  3. Wu, J. & Grunstein, M. 25 years after the nucleosome model: chromatin modifications. Trends Biochem. Sci. 25, 619–623 (2000).

    Article  CAS  Google Scholar 

  4. Jaskelioff, M., Van Komen, S., Krebs, J.E., Sung, P. & Peterson, C.L. Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J. Biol. Chem. 278, 9212–9218 (2003).

    Article  CAS  Google Scholar 

  5. Durr, H., Korner, C., Muller, M., Hickmann, V. & Hopfner, K.P. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121, 363–373 (2005).

    Article  Google Scholar 

  6. Owen-Hughes, T. Colworth memorial lecture. Pathways for remodelling chromatin. Biochem. Soc. Trans. 31, 893–905 (2003).

    Article  CAS  Google Scholar 

  7. Mellor, J. & Morillon, A. ISWI complexes in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1677, 100–112 (2004).

    Article  CAS  Google Scholar 

  8. Peterson, C.L. & Cote, J. Cellular machineries for chromosomal DNA repair. Genes Dev. 18, 602–616 (2004).

    Article  CAS  Google Scholar 

  9. Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodelling: the industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol. 7, 437–447 (2006).

    Article  CAS  Google Scholar 

  10. Hamiche, A., Sandaltzopoulos, R., Gdula, D.A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833–842 (1999).

    Article  CAS  Google Scholar 

  11. Langst, G., Bonte, E.J., Corona, D.F. & Becker, P.B. Nucleosome movement by CHRAC and ISWI without disruption or trans- displacement of the histone octamer. Cell 97, 843–852 (1999).

    Article  CAS  Google Scholar 

  12. Whitehouse, I. et al. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature 400, 784–787 (1999).

    Article  CAS  Google Scholar 

  13. Lorch, Y., Zhang, M. & Kornberg, R.D. Histone octamer transfer by a chromatin-remodeling complex. Cell 96, 389–392 (1999).

    Article  CAS  Google Scholar 

  14. Boeger, H., Griesenbeck, J., Strattan, J.S. & Kornberg, R.D. Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell 11, 1587–1598 (2003).

    Article  CAS  Google Scholar 

  15. Boeger, H., Griesenbeck, J., Strattan, J.S. & Kornberg, R.D. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol. Cell 14, 667–673 (2004).

    Article  CAS  Google Scholar 

  16. Reinke, H. & Horz, W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol. Cell 11, 1599–1607 (2003).

    Article  CAS  Google Scholar 

  17. Yang, X., Zaurin, R., Beato, M. & Peterson, C.L. Swi3p controls SWI/SNF assembly and ATP-dependent H2A–H2B displacement. Nat. Struct. Mol. Biol. 14, 540–547 (2007).

    Article  CAS  Google Scholar 

  18. Bruno, M. et al. Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities. Mol. Cell 12, 1599–1606 (2003).

    Article  CAS  Google Scholar 

  19. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    Article  CAS  Google Scholar 

  20. Raisner, R.M. et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123, 233–248 (2005).

    Article  CAS  Google Scholar 

  21. Zhang, H., Roberts, D.N. & Cairns, B.R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123, 219–231 (2005).

    Article  CAS  Google Scholar 

  22. Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R. & Kadonaga, J.T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).

    Article  CAS  Google Scholar 

  23. Varga-Weisz, P.D. et al. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602 (1997); erratum 389, 1003 (1997).

    Article  CAS  Google Scholar 

  24. Owen-Hughes, T., Utley, R.T., Cote, J., Peterson, C.L. & Workman, J.L. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science 273, 513–516 (1996).

    Article  CAS  Google Scholar 

  25. Lorch, Y., Maier-Davis, B. & Kornberg, R.D. Chromatin remodeling by nucleosome disassembly in vitro. Proc. Natl. Acad. Sci. USA 103, 3090–3093 (2006).

    Article  CAS  Google Scholar 

  26. Papamichos-Chronakis, M., Krebs, J.E. & Peterson, C.L. Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev. 20, 2437–2449 (2006).

    Article  CAS  Google Scholar 

  27. Gottesfeld, J.M. & Luger, K. Energetics and affinity of the histone octamer for defined DNA sequences. Biochemistry 40, 10927–10933 (2001).

    Article  CAS  Google Scholar 

  28. Flaus, A. & Owen-Hughes, T. Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol. Cell. Biol. 23, 7767–7779 (2003).

    Article  CAS  Google Scholar 

  29. Workman, J.L. & Kingston, R.E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579 (1998).

    Article  CAS  Google Scholar 

  30. Havas, K. et al. Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 103, 1133–1142 (2000).

    Article  CAS  Google Scholar 

  31. Gavin, I., Horn, P.J. & Peterson, C.L. SWI/SNF chromatin remodeling requires changes in DNA topology. Mol. Cell 7, 97–104 (2001).

    Article  CAS  Google Scholar 

  32. Lorch, Y., Cairns, B.R., Zhang, M. & Kornberg, R.D. Activated RSC-nucleosome complex and persistently altered form of the nucleosome. Cell 94, 29–34 (1998).

    Article  CAS  Google Scholar 

  33. Langst, G. & Becker, P.B. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8, 1085–1092 (2001).

    Article  CAS  Google Scholar 

  34. Fitzgerald, D.J. et al. Reaction cycle of the yeast Isw2 chromatin remodeling complex. EMBO J. 23, 3836–3843 (2004).

    Article  CAS  Google Scholar 

  35. Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev. 16, 2120–2134 (2002).

    Article  CAS  Google Scholar 

  36. Whitehouse, I., Stockdale, C., Flaus, A., Szczelkun, M.D. & Owen-Hughes, T. Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol. Cell. Biol. 23, 1935–1945 (2003).

    Article  CAS  Google Scholar 

  37. Alexeev, A., Mazin, A. & Kowalczykowski, S.C. Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat. Struct. Biol. 10, 182–186 (2003).

    Article  CAS  Google Scholar 

  38. Zofall, M., Persinger, J., Kassabov, S.R. & Bartholomew, B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 13, 339–346 (2006).

    Article  CAS  Google Scholar 

  39. Singleton, M.R., Dillingham, M.S. & Wigley, D.B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007).

    Article  CAS  Google Scholar 

  40. Singleton, M.R. & Wigley, D.B. Modularity and specialization in superfamily 1 and 2 helicases. J. Bacteriol. 184, 1819–1826 (2002).

    Article  CAS  Google Scholar 

  41. Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat. Struct. Mol. Biol. 12, 747–755 (2005).

    Article  CAS  Google Scholar 

  42. Fyodorov, D.V. & Kadonaga, J.T. Dynamics of ATP-dependent chromatin assembly by ACF. Nature 418, 897–900 (2002).

    Article  CAS  Google Scholar 

  43. Kagalwala, M.N., Glaus, B.J., Dang, W., Zofall, M. & Bartholomew, B. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23, 2092–2104 (2004).

    Article  CAS  Google Scholar 

  44. Schwanbeck, R., Xiao, H. & Wu, C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279, 39933–39941 (2004).

    Article  CAS  Google Scholar 

  45. Kassabov, S.R., Zhang, B., Persinger, J. & Bartholomew, B. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11, 391–403 (2003).

    Article  CAS  Google Scholar 

  46. Amitani, I., Baskin, R.J. & Kowalczykowski, S.C. Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Mol. Cell 23, 143–148 (2006).

    Article  CAS  Google Scholar 

  47. Zofall, M., Persinger, J. & Bartholomew, B. Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2. Mol. Cell. Biol. 24, 10047–10057 (2004).

    Article  CAS  Google Scholar 

  48. Mihardja, S., Spakowitz, A.J., Zhang, Y. & Bustamante, C. Effect of force on mononucleosomal dynamics. Proc. Natl. Acad. Sci. USA 103, 15871–15876 (2006).

    Article  CAS  Google Scholar 

  49. Lia, G. et al. Direct observation of DNA distortion by the RSC complex. Mol. Cell 21, 417–425 (2006).

    Article  CAS  Google Scholar 

  50. Zhang, Y. et al. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol. Cell 24, 559–568 (2006).

    Article  CAS  Google Scholar 

  51. Prasad, T.K. et al. A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops. J. Mol. Biol. 369, 940–953 (2007).

    Article  CAS  Google Scholar 

  52. Shundrovsky, A., Smith, C.L., Lis, J.T., Peterson, C.L. & Wang, M.D. Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules. Nat. Struct. Mol. Biol. 13, 549–554 (2006).

    Article  CAS  Google Scholar 

  53. Fischer, C., Saha, A. & Cairns, B. Kinetic model for the ATP-dependent translocation of S. cerevisiae RSC along double-stranded DNA. Biochemistry published online, doi:10.1021/bi700930n (5 October 2007).

  54. Strohner, R. et al. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling. Nat. Struct. Mol. Biol. 12, 683–690 (2005).

    Article  CAS  Google Scholar 

  55. Langst, G. & Becker, P.B. Nucleosome remodeling: one mechanism, many phenomena? Biochim. Biophys. Acta 1677, 58–63 (2004).

    Article  CAS  Google Scholar 

  56. Lorch, Y., Davis, B. & Kornberg, R.D. Chromatin remodeling by DNA bending, not twisting. Proc. Natl. Acad. Sci. USA 102, 1329–1332 (2005).

    Article  CAS  Google Scholar 

  57. Kim, J.L. et al. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 6, 89–100 (1998).

    Article  CAS  Google Scholar 

  58. Velankar, S.S., Soultanas, P., Dillingham, M.S., Subramanya, H.S. & Wigley, D.B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999).

    Article  CAS  Google Scholar 

  59. Dumont, S. et al. RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439, 105–108 (2006).

    Article  CAS  Google Scholar 

  60. Thoma, N.H. et al. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nat. Struct. Mol. Biol. 12, 350–356 (2005).

    Article  Google Scholar 

  61. Dillingham, M.S., Wigley, D.B. & Webb, M.R. Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 39, 205–212 (2000).

    Article  CAS  Google Scholar 

  62. Kawaoka, J., Jankowsky, E. & Pyle, A.M. Backbone tracking by the SF2 helicase NPH-II. Nat. Struct. Mol. Biol. 11, 526–530 (2004).

    Article  CAS  Google Scholar 

  63. Seidel, R. et al. Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I. Nat. Struct. Mol. Biol. 11, 838–843 (2004).

    Article  CAS  Google Scholar 

  64. Grune, T. et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol. Cell 12, 449–460 (2003).

    Article  Google Scholar 

  65. Gangaraju, V.K. & Bartholomew, B. Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol. Cell. Biol. 27, 3217–3225 (2007).

    Article  CAS  Google Scholar 

  66. Yang, J.G., Madrid, T.S., Sevastopoulos, E. & Narlikar, G.J. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat. Struct. Mol. Biol. 13, 1078–1083 (2006).

    Article  CAS  Google Scholar 

  67. He, X., Fan, H.Y., Narlikar, G.J. & Kingston, R.E. Human ACF1 alters the remodeling strategy of SNF2h. J. Biol. Chem. 281, 28636–28647 (2006).

    Article  CAS  Google Scholar 

  68. Clapier, C.R., Langst, G., Corona, D.F., Becker, P.B. & Nightingale, K.P. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875–883 (2001).

    Article  CAS  Google Scholar 

  69. Corona, D.F., Clapier, C.R., Becker, P.B. & Tamkun, J.W. Modulation of ISWI function by site-specific histone acetylation. EMBO Rep. 3, 242–247 (2002).

    Article  CAS  Google Scholar 

  70. Asturias, F.J., Chung, W.H., Kornberg, R.D. & Lorch, Y. Structural analysis of the RSC chromatin-remodeling complex. Proc. Natl. Acad. Sci. USA 99, 13477–13480 (2002).

    Article  CAS  Google Scholar 

  71. Leschziner, A.E. et al. Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method. Proc. Natl. Acad. Sci. USA 104, 4913–4918 (2007).

    Article  CAS  Google Scholar 

  72. Skiniotis, G., Moazed, D. & Walz, T. Acetylated histone tail peptides induce structural rearrangements in the RSC chromatin remodeling complex. J. Biol. Chem. 282, 20804–20808 (2007).

    Article  CAS  Google Scholar 

  73. Lee, C.K., Shibata, Y., Rao, B., Strahl, B.D. & Lieb, J.D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 36, 900–905 (2004).

    Article  CAS  Google Scholar 

  74. Schwabish, M.A. & Struhl, K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 24, 10111–10117 (2004).

    Article  CAS  Google Scholar 

  75. Korber, P. et al. The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters. J. Biol. Chem. 281, 5539–5545 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank R. Viswanathan for considerable help in making figures, and J. Wittmeyer for helpful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cairns, B. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol 14, 989–996 (2007). https://doi.org/10.1038/nsmb1333

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1333

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing