Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

F1-ATPase rotates by an asymmetric, sequential mechanism using all three catalytic subunits

A Corrigendum to this article was published on 01 October 2007

This article has been updated

Abstract

F1-ATPase, the catalytic part of FoF1-ATP synthase, rotates the central γ subunit within the α3β3 cylinder in 120° steps, each step consuming a single ATP molecule. However, how the catalytic activity of each β subunit is coordinated with the other two β subunits to drive rotation remains unknown. Here we show that hybrid F1 containing one or two mutant β subunits with altered catalytic kinetics rotates in an asymmetric stepwise fashion. Analysis of the rotations reveals that for any given β subunit, the subunit binds ATP at 0°, cleaves ATP at 200° and carries out a third catalytic event at 320°. This demonstrates the concerted nature of the F1 complex activity, where all three β subunits participate to drive each 120° rotation of the γ subunit with a 120° phase difference, a process we describe as a 'sequential three-site mechanism'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation and rotation of hybrid F1.
Figure 2: Histograms of pause durations.
Figure 3: Angle distributions of the rotating beads of F1(1 × E190D) at low ATP concentrations.
Figure 4: Illustrations of the rotation model.

Similar content being viewed by others

Change history

  • 17 September 2007

    figure 4 (b) replaced

Notes

  1. *NOTE: In the version of this article initially published, the proposed model for coupling the rotation and catalysis of the F1 β subunits to the concerted activity of their active sites shown in Figure 4 was incorrectly drawn. The error has been corrected in the HTML and PDF versions of the article

References

  1. Boyer, P.D. The ATP synthase–a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    Article  CAS  Google Scholar 

  2. Kinosita, K., Jr., Adachi, K. & Itoh, H. Rotation of F1-ATPase: how an ATP-driven molecular machine may work. Annu. Rev. Biophys. Biomol. Struct. 33, 245–268 (2004).

    Article  CAS  Google Scholar 

  3. Kayalar, C., Rosing, J. & Boyer, P.D. An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions. J. Biol. Chem. 252, 2486–2491 (1977).

    CAS  PubMed  Google Scholar 

  4. Gresser, M.J., Myers, J.A. & Boyer, P.D. Catalytic site cooperativity of beef heart mitochondrial F1 adenosine triphosphatase. Correlations of initial velocity, bound intermediate, and oxygen exchange measurements with an alternating three-site model. J. Biol. Chem. 257, 12030–12038 (1982).

    CAS  PubMed  Google Scholar 

  5. Grubmeyer, C., Cross, R.L. & Penefsky, H.S. Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate constants for elementary steps in catalysis at a single site. J. Biol. Chem. 257, 12092–12100 (1982).

    CAS  PubMed  Google Scholar 

  6. Cross, R.L., Grubmeyer, C. & Penefsky, H.S. Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate enhancements resulting from cooperative interactions between multiple catalytic sites. J. Biol. Chem. 257, 12101–12105 (1982).

    CAS  PubMed  Google Scholar 

  7. Boyer, P.D. The binding change mechanism for ATP synthase–some probabilities and possibilities. Biochim. Biophys. Acta 1140, 215–250 (1993).

    Article  CAS  Google Scholar 

  8. Abrahams, J.P., Leslie, A.G., Lutter, R. & Walker, J.E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  Google Scholar 

  9. Bowler, M.W., Montgomery, M.G., Leslie, A.G. & Walker, J.E. How azide inhibits ATP hydrolysis by the F-ATPases. Proc. Natl. Acad. Sci. USA 103, 8646–8649 (2006).

    Article  CAS  Google Scholar 

  10. Bowler, M.W., Montgomery, M.G., Leslie, A.G. & Walker, J.E. Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 Å resolution. J. Biol. Chem. 282, 14238–14242 (2007).

    Article  CAS  Google Scholar 

  11. Weber, J., Wilke-Mounts, S., Lee, R.S., Grell, E. & Senior, A.E. Specific placement of tryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied. J. Biol. Chem. 268, 20126–20133 (1993).

    CAS  PubMed  Google Scholar 

  12. Ren, H., Bandyopadhyay, S. & Allison, W.S. The α3(βMet222Ser/Tyr345Trp)3γ subcomplex of the TF1-ATPase does not hydolyze ATP at a significant rate until the substrate binds to the catalytic site of the lowest affinity. Biochemistry 45, 6222–6230 (2006).

    Article  CAS  Google Scholar 

  13. Senior, A.E., Nadanaciva, S. & Weber, J. The molecular mechanism of ATP synthesis by F1F0-ATP synthase. Biochim. Biophys. Acta 1553, 188–211 (2002).

    Article  CAS  Google Scholar 

  14. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K., Jr. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    Article  CAS  Google Scholar 

  15. Yasuda, R., Noji, H., Kinosita, K., Jr. & Yoshida, M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps. Cell 93, 1117–1124 (1998).

    Article  CAS  Google Scholar 

  16. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., Jr. & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001).

    Article  CAS  Google Scholar 

  17. Shimabukuro, K. et al. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40° substep rotation. Proc. Natl. Acad. Sci. USA 100, 14731–14736 (2003).

    Article  CAS  Google Scholar 

  18. Xing, J., Liao, J.C. & Oster, G. Making ATP. Proc. Natl. Acad. Sci. USA 102, 16539–16546 (2005).

    Article  CAS  Google Scholar 

  19. Gao, Y.Q., Yang, W. & Karplus, M. A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase. Cell 123, 195–205 (2005).

    Article  CAS  Google Scholar 

  20. Ariga, T., Masaike, T., Noji, H. & Yoshida, M. Stepping rotation of F1-ATPase with one, two, or three altered catalytic sites that bind ATP only slowly. J. Biol. Chem. 277, 24870–24874 (2002).

    Article  CAS  Google Scholar 

  21. Amano, T., Tozawa, K., Yoshida, M. & Murakami, H. Spatial precision of a catalytic carboxylate of F1-ATPase beta subunit probed by introducing different carboxylate-containing side chains. FEBS Lett. 348, 93–98 (1994).

    Article  CAS  Google Scholar 

  22. Dittrich, M., Hayashi, S. & Schulten, K. On the mechanism of ATP hydrolysis in F1-ATPase. Biophys. J. 85, 2253–2266 (2003).

    Article  CAS  Google Scholar 

  23. Dittrich, M., Hayashi, S. & Schulten, K. ATP hydrolysis in the βTP and βDP catalytic sites of F1-ATPase. Biophys. J. 87, 2954–2967 (2004).

    Article  CAS  Google Scholar 

  24. Nishizaka, T. et al. Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat. Struct. Mol. Biol. 11, 142–148 (2004).

    Article  CAS  Google Scholar 

  25. Senior, A.E. & Weber, J. Happy motoring with ATP synthase. Nat. Struct. Mol. Biol. 11, 110–112 (2004).

    Article  CAS  Google Scholar 

  26. Weber, J., Bowman, C. & Senior, A.E. Specific tryptophan substitution in catalytic sites of Escherichia coli F1-ATPase allows differentiation between bound substrate ATP and product ADP in steady-state catalysis. J. Biol. Chem. 271, 18711–18718 (1996).

    Article  CAS  Google Scholar 

  27. Weber, J. & Senior, A.E. Effects of the inhibitors azide, dicyclohexylcarbodiimide, and aurovertin on nucleotide binding to the three F1-ATPase catalytic sites measured using specific tryptophan probes. J. Biol. Chem. 273, 33210–33215 (1998).

    Article  CAS  Google Scholar 

  28. Schlichting, I. et al. Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345, 309–315 (1990).

    Article  CAS  Google Scholar 

  29. Antes, I., Chandler, D., Wang, H. & Oster, G. The unbinding of ATP from F1-ATPase. Biophys. J. 85, 695–706 (2003).

    Article  CAS  Google Scholar 

  30. Rosing, J., Kayalar, C. & Boyer, P.D. Evidence for energy-dependent change in phosphate binding for mitochondrial oxidative phosphorylation based on measurements of medium and intermediate phosphate-water exchanges. J. Biol. Chem. 252, 2478–2485 (1977).

    CAS  PubMed  Google Scholar 

  31. Masaike, T., Muneyuki, E., Noji, H., Kinosita, K., Jr. & Yoshida, M. F1-ATPase changes its conformations upon phosphate release. J. Biol. Chem. 277, 21643–21649 (2002).

    Article  CAS  Google Scholar 

  32. Monod, J., Wyman, J. & Changeux, J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  33. Koshland, D.E., Jr., Nemethy, G. & Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365–385 (1966).

    Article  CAS  Google Scholar 

  34. Itoh, H. et al. Mechanically driven ATP synthesis by F1-ATPase. Nature 427, 465–468 (2004).

    Article  CAS  Google Scholar 

  35. Rondelez, Y. et al. Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433, 773–777 (2005).

    Article  CAS  Google Scholar 

  36. Kaseda, K., Higuchi, H. & Hirose, K. Alternate fast and slow stepping of a heterodimeric kinesin molecule. Nat. Cell Biol. 5, 1079–1082 (2003).

    Article  CAS  Google Scholar 

  37. Asbury, C.L., Fehr, A.N. & Block, S.M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003).

    Article  CAS  Google Scholar 

  38. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  39. Park, H. et al. Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering. Mol. Cell 21, 331–336 (2006).

    Article  CAS  Google Scholar 

  40. Tomishige, M., Klopfenstein, D.R. & Vale, R.D. Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science 297, 2263–2267 (2002).

    Article  CAS  Google Scholar 

  41. Kitamura, K., Tokunaga, M., Esaki, S., Iwane, A.H. & Yanagida, T. Mechanism of muscle contraction based on stochastic properties of single actomyosin motors observed in vitro. Biophysics 1, 1–19 (2005).

    Article  CAS  Google Scholar 

  42. Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. Numerical Recipes in C (Cambridge University Press, New York, 1992).

    Google Scholar 

Download references

Acknowledgements

We thank P.D. Boyer, K. Kinosita Jr., T. Kodama, H. Itoh, H. Noji, Y. Taniguchi and our other colleagues for valuable discussions, K. Shimabukuro (Tokyo Institute of Technology) for providing the plasmid fragments encoding β(E190D), K. Adachi (Waseda University) and R. Yasuda (Duke University) for programming the image-processing software, and P. Karagiannis for carefully revising the manuscript. This work was supported in part by a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (14380313; to E.M.), and T.A. was supported by a Research Fellowship of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

T.A. performed all experiments and data analysis. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Takayuki Ariga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1, Supplementary Methods (PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariga, T., Muneyuki, E. & Yoshida, M. F1-ATPase rotates by an asymmetric, sequential mechanism using all three catalytic subunits. Nat Struct Mol Biol 14, 841–846 (2007). https://doi.org/10.1038/nsmb1296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1296

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing