Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A toxic monomeric conformer of the polyglutamine protein

Abstract

Polyglutamine (polyQ) diseases are classified as conformational neurodegenerative diseases, like Alzheimer and Parkinson diseases, and they are caused by proteins with an abnormally expanded polyQ stretch. However, conformational changes of the expanded polyQ protein and the toxic conformers formed during aggregation have remained poorly understood despite their important role in pathogenesis. Here we show that a β-sheet conformational transition of the expanded polyQ protein monomer precedes its assembly into β-sheet–rich amyloid-like fibrils. Microinjection of the various polyQ protein conformers into cultured cells revealed that the soluble β-sheet monomer causes cytotoxicity. The polyQ-binding peptide QBP1 prevents the toxic β-sheet conformational transition of the expanded polyQ protein monomer. We conclude that the toxic conformational transition, and not simply the aggregation process itself, is a therapeutic target for polyQ diseases and possibly for conformational diseases in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The polyQ stretch contributes an α-helical structure to thio-polyQ fusion proteins.
Figure 2: The expanded thio-polyQ protein undergoes a conformational transition to a β-sheet–dominant structure, resulting in amyloid-like fibril formation.
Figure 3: The soluble thio-polyQ protein with a β-sheet–dominant structure is mainly a monomer.
Figure 4: The soluble β-sheet monomer of the expanded polyQ protein is cytotoxic.
Figure 5: QBP1 prevents the expanded polyQ protein monomer from undergoing the toxic β-sheet conformational transition, resulting in inhibition of amyloid-like fibril formation.
Figure 6: Proposed mechanisms of cytotoxicity of the expanded polyQ protein and its inhibition by QBP1.

Similar content being viewed by others

References

  1. Ross, C.A. & Poirier, M.A. Opinion: what is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell Biol. 6, 891–898 (2005).

    Article  CAS  Google Scholar 

  2. Carrell, R.W. & Lomas, D.A. Conformational disease. Lancet 350, 134–138 (1997).

    Article  CAS  Google Scholar 

  3. Soto, C. Protein misfolding and disease; protein refolding and therapy. FEBS Lett. 498, 204–207 (2001).

    Article  CAS  Google Scholar 

  4. Caughey, B. & Lansbury, P.T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  Google Scholar 

  5. Stefani, M. & Dobson, C.M. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81, 678–699 (2003).

    Article  CAS  Google Scholar 

  6. Gusella, J.F. & MacDonald, M.E. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat. Rev. Neurosci. 1, 109–115 (2000).

    Article  CAS  Google Scholar 

  7. Zoghbi, H.Y. & Orr, H.T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247 (2000).

    Article  CAS  Google Scholar 

  8. Perutz, M.F., Johnson, T., Suzuki, M. & Finch, J.T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 91, 5355–5358 (1994).

    Article  CAS  Google Scholar 

  9. Chen, S., Berthelier, V., Hamilton, J.B., O'Nuallain, B. & Wetzel, R. Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41, 7391–7399 (2002).

    Article  CAS  Google Scholar 

  10. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558 (1997).

    Article  CAS  Google Scholar 

  11. Bevivino, A.E. & Loll, P.J. An expanded glutamine repeat destabilizes native ataxin-3 structure and mediates formation of parallel β-fibrils. Proc. Natl. Acad. Sci. USA 98, 11955–11960 (2001).

    Article  CAS  Google Scholar 

  12. Tanaka, M., Morishima, I., Akagi, T., Hashikawa, T. & Nukina, N. Intra- and intermolecular β-pleated sheet formation in glutamine-repeat inserted myoglobin as a model for polyglutamine diseases. J. Biol. Chem. 276, 45470–45475 (2001).

    Article  CAS  Google Scholar 

  13. Nagai, Y. et al. Inhibition of polyglutamine protein aggregation and cell death by novel peptides identified by phage display screening. J. Biol. Chem. 275, 10437–10442 (2000).

    Article  CAS  Google Scholar 

  14. Nagai, Y. et al. Prevention of polyglutamine oligomerization and neurodegeneration by the peptide inhibitor QBP1 in Drosophila. Hum. Mol. Genet. 12, 1253–1259 (2003).

    Article  CAS  Google Scholar 

  15. Sanchez, I., Mahlke, C. & Yuan, J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421, 373–379 (2003).

    Article  CAS  Google Scholar 

  16. Colby, D.W. et al. Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc. Natl. Acad. Sci. USA 101, 17616–17621 (2004).

    Article  CAS  Google Scholar 

  17. Cummings, C.J. et al. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 19, 148–154 (1998).

    Article  CAS  Google Scholar 

  18. Warrick, J.M. et al. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23, 425–428 (1999).

    Article  CAS  Google Scholar 

  19. Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    Article  CAS  Google Scholar 

  20. Kopito, R.R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10, 524–530 (2000).

    Article  CAS  Google Scholar 

  21. Trottier, Y. et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378, 403–406 (1995).

    Article  CAS  Google Scholar 

  22. Popiel, H.A. et al. Disruption of the toxic conformation of the expanded polyglutamine stretch leads to suppression of aggregate formation and cytotoxicity. Biochem. Biophys. Res. Commun. 317, 1200–1206 (2004).

    Article  CAS  Google Scholar 

  23. Sreerama, N. & Woody, R.W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal. Biochem. 209, 32–44 (1993).

    Article  CAS  Google Scholar 

  24. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article  CAS  Google Scholar 

  25. Sanbe, A. et al. Reversal of amyloid-induced heart disease in desmin-related cardiomyopathy. Proc. Natl. Acad. Sci. USA 102, 13592–13597 (2005).

    Article  CAS  Google Scholar 

  26. Sharma, D., Sharma, S., Pasha, S. & Brahmachari, S.K. Peptide models for inherited neurodegenerative disorders: conformation and aggregation properties of long polyglutamine peptides with and without interruptions. FEBS Lett. 456, 181–185 (1999).

    Article  CAS  Google Scholar 

  27. Altschuler, E.L., Hud, N.V., Mazrimas, J.A. & Rupp, B. Random coil conformation for extended polyglutamine stretches in aqueous soluble monomeric peptides. J. Pept. Res. 50, 73–75 (1997).

    Article  CAS  Google Scholar 

  28. Masino, L., Kelly, G., Leonard, K., Trottier, Y. & Pastore, A. Solution structure of polyglutamine tracts in GST-polyglutamine fusion proteins. FEBS Lett. 513, 267–272 (2002).

    Article  CAS  Google Scholar 

  29. Bhattacharyya, A. et al. Oligoproline effects on polyglutamine conformation and aggregation. J. Mol. Biol. 355, 524–535 (2006).

    Article  CAS  Google Scholar 

  30. Lathrop, R.H., Casale, M., Tobias, D.J., Marsh, J.L. & Thompson, L.M. Modeling protein homopolymeric repeats: possible polyglutamine structural motifs for Huntington's disease. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 105–114 (1998).

    CAS  PubMed  Google Scholar 

  31. Richardson, J.S. & Richardson, D.C. The de novo design of protein structures. Trends Biochem. Sci. 14, 304–309 (1989).

    Article  CAS  Google Scholar 

  32. Zagorski, M.G. & Barrow, C.J. NMR studies of amyloid β-peptides: proton assignments, secondary structure, and mechanism of an α-helix → β-sheet conversion for a homologous, 28-residue, N-terminal fragment. Biochemistry 31, 5621–5631 (1992).

    Article  CAS  Google Scholar 

  33. Nguyen, J., Baldwin, M.A., Cohen, F.E. & Prusiner, S.B. Prion protein peptides induce α-helix to β-sheet conformational transitions. Biochemistry 34, 4186–4192 (1995).

    Article  CAS  Google Scholar 

  34. Gross, M. Proteins that convert from α helix to β sheet: implications for folding and disease. Curr. Protein Pept. Sci. 1, 339–347 (2000).

    Article  CAS  Google Scholar 

  35. Kelly, J.W. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8, 101–106 (1998).

    Article  CAS  Google Scholar 

  36. Serpell, L.C. Alzheimer's amyloid fibrils: structure and assembly. Biochim. Biophys. Acta 1502, 16–30 (2000).

    Article  CAS  Google Scholar 

  37. Cohen, F.E. & Prusiner, S.B. Pathologic conformations of prion proteins. Annu. Rev. Biochem. 67, 793–819 (1998).

    Article  CAS  Google Scholar 

  38. Harper, J.D. & Lansbury, P.T., Jr. Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997).

    Article  CAS  Google Scholar 

  39. Poirier, M.A. et al. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J. Biol. Chem. 277, 41032–41037 (2002).

    Article  CAS  Google Scholar 

  40. Yang, W., Dunlap, J.R., Andrews, R.B. & Wetzel, R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11, 2905–2917 (2002).

    Article  CAS  Google Scholar 

  41. Pike, C.J., Burdick, D., Walencewicz, A.J., Glabe, C.G. & Cotman, C.W. Neurodegeneration induced by β-amyloid peptides in vitro: the role of peptide assembly state. J. Neurosci. 13, 1676–1687 (1993).

    Article  CAS  Google Scholar 

  42. Klein, W.L., Stine, W.B., Jr. & Teplow, D.B. Small assemblies of unmodified amyloid β-protein are the proximate neurotoxin in Alzheimer's disease. Neurobiol. Aging 25, 569–580 (2004).

    Article  CAS  Google Scholar 

  43. Selkoe, D.J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).

    Article  CAS  Google Scholar 

  44. Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).

    Article  CAS  Google Scholar 

  45. Taylor, B.M. et al. Spontaneous aggregation and cytotoxicity of the β-amyloid Aβ1–40: a kinetic model. J. Protein Chem. 22, 31–40 (2003).

    Article  CAS  Google Scholar 

  46. Reixach, N., Deechongkit, S., Jiang, X., Kelly, J.W. & Buxbaum, J.N. Tissue damage in the amyloidoses: transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc. Natl. Acad. Sci. USA 101, 2817–2822 (2004).

    Article  CAS  Google Scholar 

  47. Schaffar, G. et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15, 95–105 (2004).

    Article  CAS  Google Scholar 

  48. Wanker, E.E. Protein aggregation in Huntington's and Parkinson's disease: implications for therapy. Mol. Med. Today 6, 387–391 (2000).

    Article  CAS  Google Scholar 

  49. Bates, G. Huntingtin aggregation and toxicity in Huntington's disease. Lancet 361, 1642–1644 (2003).

    Article  CAS  Google Scholar 

  50. Heiser, V. et al. Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington's disease by using an automated filter retardation assay. Proc. Natl. Acad. Sci. USA 99 Suppl 4, 16400–16406 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.R. Burke, W.J. Strittmatter, O. Onodera and H. Hiramatsu for helpful discussions, H. Matsushima, R. Sasaki, C. Ito, M. Sakai, A. Fukuhara, Y. Okamoto, T. Saiwaki, T. Sekimoto and Y. Yoneda for technical assistance, K. Akao (JASCO) for the FT-IR measurements and R. Hirota (RIBM) for the AFM image recordings. This work was supported in part by Grants-in-Aid for Scientific Research on Priority Areas (to Y.N.; Advanced Brain Science Project, Research on Pathomechanisms of Brain Disorders, Life of Proteins, and Water and Biomolecules) and the 21st Century COE program (to T.T.) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan; by Grants-in-Aid for Scientific Research (to Y.N. and T.I.) from the Japan Society for the Promotion of Science; and by a Grant-in-Aid for the Research Committee for Ataxic Diseases (to Y.N.) from the Ministry of Health, Labor and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Y.N. and T.I. designed the research. Y.N., T.I., H.A.P. and N.F. performed the biochemical and cell culture experiments. K.H. and H.N. performed the EM experiments. Y.U. provided the CD spectropolarimeter. Y.G. performed the analytical ultracentrifugation experiments. Y.N., T.I. and T.T. wrote the paper.

Corresponding authors

Correspondence to Yoshitaka Nagai or Tatsushi Toda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagai, Y., Inui, T., Popiel, H. et al. A toxic monomeric conformer of the polyglutamine protein. Nat Struct Mol Biol 14, 332–340 (2007). https://doi.org/10.1038/nsmb1215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing