Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Determinants of histone H1 mobility and chromatin binding in living cells

Abstract

The dynamic interaction of chromatin-binding proteins with their nucleosome binding sites is an important element in regulating the structure and function of chromatin in living cells. Here we review the major factors regulating the intranuclear mobility and chromatin binding of the linker histone H1, the most abundant family of nucleosome-binding proteins. The information available reveals that multiple and diverse factors modulate the interaction of H1 with chromatin at both a local and global level. This multifaceted mode of modulating the interaction of H1 with nucleosomes is part of the mechanism that regulates the dynamics of the chromatin fiber in living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of protein dynamics in living cells by FRAP.
Figure 2: Structural features of H1 variants.
Figure 3: Dynamic binding of H1 to chromatin.
Figure 4: Determinants of H1-nucleosome interactions.

Similar content being viewed by others

References

  1. Luger, K. & Hansen, J.C. Nucleosome and chromatin fiber dynamics. Curr. Opin. Struct. Biol. 15, 188–196 (2005).

    Article  CAS  Google Scholar 

  2. Bustin, M., Catez, F. & Lim, J.H. The dynamics of histone H1 function in chromatin. Mol. Cell 17, 617–620 (2005).

    Article  CAS  Google Scholar 

  3. Harvey, A.C. & Downs, J.A. What functions do linker histones provide? Mol. Microbiol. 53, 771–775 (2004).

    Article  CAS  Google Scholar 

  4. Brown, D.T. Histone H1 and the dynamic regulation of chromatin function. Biochem. Cell Biol. 81, 221–227 (2003).

    Article  CAS  Google Scholar 

  5. Parseghian, M.H. & Hamkalo, B.A. A compendium of the histone H1 family of somatic subtypes: an elusive cast of characters and their characteristics. Biochem. Cell Biol. 79, 289–304 (2001).

    Article  CAS  Google Scholar 

  6. Khochbin, S. Histone H1 diversity: bridging regulatory signals to linker histone function. Gene 271, 1–12 (2001).

    Article  CAS  Google Scholar 

  7. Kasinsky, H.E., Lewis, J.D., Dacks, J.B. & Ausio, J. Origin of H1 linker histones. FASEB J. 15, 34–42 (2001).

    Article  CAS  Google Scholar 

  8. Georgel, P.T. & Hansen, J.C. Linker histone function in chromatin: dual mechanisms of action. Biochem. Cell Biol. 79, 313–316 (2001).

    Article  CAS  Google Scholar 

  9. Thomas, J.O. Histone H1: location and role. Curr. Opin. Cell Biol. 11, 312–317 (1999).

    Article  CAS  Google Scholar 

  10. Wolffe, A.P., Khochbin, S. & Dimitrov, S. What do linker histones do in chromatin? Bioessays 19, 249–255 (1997).

    Article  CAS  Google Scholar 

  11. Van Holde, K.E. Chromatin (Springer-Verlag, New York, 1988).

    Google Scholar 

  12. Woodcock, C.L., Skoutchi, A.I. & Fan, Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res. 14, 17–25 (2006).

    Article  CAS  Google Scholar 

  13. Misteli, T., Gunjan, A., Hock, R., Bustin, M. & Brown, D.T. Dynamic binding of histone H1 to chromatin in living cells. Nature 408, 877–881 (2000).

    Article  CAS  Google Scholar 

  14. Lever, M.A., Th'ng, J.P., Sun, X. & Hendzel, M.J. Rapid exchange of histone H1.1 on chromatin in living human cells. Nature 408, 873–876 (2000).

    Article  CAS  Google Scholar 

  15. Catez, F. et al. Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin. Mol. Cell. Biol. 24, 4321–4328 (2004).

    Article  CAS  Google Scholar 

  16. Catez, F., Brown, D.T., Misteli, T. & Bustin, M. Competition between histone H1 and HMGN proteins for chromatin binding sites. EMBO Rep. 3, 760–766 (2002).

    Article  CAS  Google Scholar 

  17. Phair, R.D. et al. Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell. Biol. 24, 6393–6402 (2004).

    Article  CAS  Google Scholar 

  18. Roix, J. & Misteli, T. Genomes, proteomes, and dynamic networks in the cell nucleus. Histochem. Cell Biol. 118, 105–116 (2002).

    CAS  PubMed  Google Scholar 

  19. Zlatanova, J., Caiafa, P. & Van Holde, K. Linker histone binding and displacement: versatile mechanism for transcriptional regulation. FASEB J. 14, 1697–1704 (2000).

    Article  CAS  Google Scholar 

  20. Ausio, J. Are linker histones (histone H1) dispensable for survival? Bioessays 22, 873–877 (2000).

    Article  CAS  Google Scholar 

  21. Downs, J.A., Kosmidou, E., Morgan, A. & Jackson, S.P. Suppression of homologous recombination by the Saccharomyces cerevisiae linker histone. Mol. Cell 11, 1685–1692 (2003).

    Article  CAS  Google Scholar 

  22. Hellauer, K., Sirard, E. & Turcotte, B. Decreased expression of specific genes in yeast cells lacking histone H1. J. Biol. Chem. 276, 13587–13592 (2001).

    Article  CAS  Google Scholar 

  23. Lin, Q. et al. Reductions in linker histone levels are tolerated in developing spermatocytes but cause changes in specific gene expression. J. Biol. Chem. 279, 23525–23535 (2004).

    Article  CAS  Google Scholar 

  24. Shen, X., Yu, L., Weir, J.W. & Gorovsky, M.A. Linker histones are not essential and affect chromatin condensation in vivo. Cell 82, 47–56 (1995).

    Article  CAS  Google Scholar 

  25. Takami, Y., Nishi, R. & Nakayama, T. Histone H1 variants play individual roles in transcription regulation in the DT40 chicken B cell line. Biochem. Biophys. Res. Commun. 268, 501–508 (2000).

    Article  CAS  Google Scholar 

  26. Wierzbicki, A.T. & Jerzmanowski, A. Suppression of histone H1 genes in Arabidopsis results in heritable developmental defects and stochastic changes in DNA methylation. Genetics 169, 997–1008 (2004).

    Article  Google Scholar 

  27. Fan, Y. et al. H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol. Cell. Biol. 23, 4559–4572 (2003).

    Article  CAS  Google Scholar 

  28. Fan, Y. & Skoultchi, A.I. Genetic analysis of H1 linker histone subtypes and their functions in mice. Methods Enzymol. 377, 85–107 (2004).

    Article  CAS  Google Scholar 

  29. Fan, Y. et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123, 1199–1212 (2005).

    Article  CAS  Google Scholar 

  30. Mellor, J. The dynamics of chromatin remodeling at promoters. Mol. Cell 19, 147–157 (2005).

    Article  CAS  Google Scholar 

  31. Hendzel, M.J., Lever, M.A., Crawford, E. & Th'ng, J.P. The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo. J. Biol. Chem. 279, 20028–20034 (2004).

    Article  CAS  Google Scholar 

  32. Gunjan, A., Alexander, B.T., Sittman, D.B. & Brown, D.T. Effects of H1 histone variant overexpression on chromatin structure. J. Biol. Chem. 274, 37950–37956 (1999).

    Article  CAS  Google Scholar 

  33. Brown, D., Izard, T. & Misteli, T. Mapping the interaction surface of the linker H1 with the nucleosome of native chromatin in vivo. Nat. Struct. Mol. Biol., 13, 250–255 (2006).

    Article  CAS  Google Scholar 

  34. Houtsmuller, A.B. & Vermeulen, W. Macromolecular dynamics in living cell nuclei revealed by fluorescence redistribution after photobleaching. Histochem. Cell Biol. 115, 13–21 (2001).

    Article  CAS  Google Scholar 

  35. Phair, R.D. & Misteli, T. Kinetic modelling approaches to in vivo imaging. Nat. Rev. Mol. Cell Biol. 2, 898–907 (2001).

    Article  CAS  Google Scholar 

  36. Krouwels, I.M. et al. A glue for heterochromatin maintenance: stable SUV39H1 binding to heterochromatin is reinforced by the SET domain. J. Cell Biol. 170, 537–549 (2005).

    Article  CAS  Google Scholar 

  37. Th'ng, J.P., Sung, R., Ye, M. & Hendzel, M.J. H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain. J. Biol. Chem. 280, 27809–27814 (2005).

    Article  CAS  Google Scholar 

  38. Becker, M. et al. Differential in vivo binding dynamics of somatic and oocyte-specific linker histones in oocytes and during ES cell nuclear transfer. Mol. Biol. Cell 16, 3887–3895 (2005).

    Article  CAS  Google Scholar 

  39. Teranishi, T. et al. Rapid replacement of somatic linker histones with the oocyte-specific linker histone H1foo in nuclear transfer. Dev. Biol. 266, 76–86 (2004).

    Article  CAS  Google Scholar 

  40. Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006).

    Article  CAS  Google Scholar 

  41. Bustin, M., Rall, S.C., Stellwagen, R.H. & Cole, R.D. Histone structure: asymmetric distribution of lysine residues in lysine-rich histone. Science 163, 391–393 (1969).

    Article  CAS  Google Scholar 

  42. Lu, X. & Hansen, J.C. Revisiting the structure and functions of the linker histone C-terminal tail domain. Biochem. Cell Biol. 81, 173–176 (2003).

    Article  Google Scholar 

  43. Bharath, M.M., Ramesh, S., Chandra, N.R. & Rao, M.R. Identification of a 34 amino acid stretch within the C-terminus of histone H1 as the DNA-condensing domain by site-directed mutagenesis. Biochemistry 41, 7617–7627 (2002).

    Article  CAS  Google Scholar 

  44. Lu, X. & Hansen, J.C. Identification of specific functional subdomains within the linker histone H10 C-terminal domain. J. Biol. Chem. 279, 8701–8707 (2004).

    Article  CAS  Google Scholar 

  45. Alexandrow, M.G. & Hamlin, J.L. Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. J. Cell Biol. 168, 875–886 (2005).

    Article  CAS  Google Scholar 

  46. Horn, P.J. et al. Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes. Nat. Struct. Biol. 9, 263–267 (2002).

    Article  CAS  Google Scholar 

  47. Chen, D. et al. Condensed mitotic chromatin is accessible to transcription factors and chromatin structural proteins. J. Cell Biol. 168, 41–54 (2005).

    Article  CAS  Google Scholar 

  48. Contreras, A. et al. The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Mol. Cell. Biol. 23, 8626–8636 (2003).

    Article  CAS  Google Scholar 

  49. Dou, Y. & Gorovsky, M.A. Phosphorylation of linker histone H1 regulates gene expression in vivo by creating a charge patch. Mol. Cell 6, 225–231 (2000).

    Article  CAS  Google Scholar 

  50. Dou, Y., Bowen, J., Liu, Y. & Gorovsky, M.A. Phosphorylation and an ATP-dependent process increase the dynamic exchange of H1 in chromatin. J. Cell Biol. 158, 1161–1170 (2002).

    Article  CAS  Google Scholar 

  51. Vaquero, A. et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 16, 93–105 (2004).

    Article  CAS  Google Scholar 

  52. Daujat, S., Zeissler, U., Waldmann, T., Happel, N. & Schneider, R. HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J. Biol. Chem. 280, 38090–38095 (2005).

    Article  CAS  Google Scholar 

  53. Smith, C.L. & Peterson, C.L. ATP-dependent chromatin remodeling. Curr. Top. Dev. Biol. 65, 115–148 (2005).

    Article  CAS  Google Scholar 

  54. Martic, G. et al. Parathymosin affects the binding of linker histone H1 to nucleosomes and remodels chromatin structure. J. Biol. Chem. 280, 16143–16150 (2005).

    Article  CAS  Google Scholar 

  55. Hill, D.A. & Reeves, R. Competition between HMG-I(Y), HMG-1 and histone H1 on four-way junction DNA. Nucleic Acids Res. 25, 3523–3531 (1997).

    Article  CAS  Google Scholar 

  56. Varga-Weisz, P., van Holde, K. & Zlatanova, J. Competition between linker histones and HMG1 for binding to four-way junction DNA: implications for transcription. Biochem. Biophys. Res. Commun. 203, 1904–1911 (1994).

    Article  CAS  Google Scholar 

  57. Zhao, K., Kas, E., Gonzalez, E. & Laemmli, U.K. SAR-dependent mobilization of histone H1 by HMG-I/Y in vitro: HMG-I/Y is enriched in H1-depleted chromatin. EMBO J. 12, 3237–3247 (1993).

    Article  CAS  Google Scholar 

  58. Ner, S.S. et al. HMG-D and histone H1 interplay during chromatin assembly and early embryogenesis. J. Biol. Chem. 276, 37569–37576 (2001).

    Article  CAS  Google Scholar 

  59. Bustin, M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell. Biol. 19, 5237–5246 (1999).

    Article  CAS  Google Scholar 

  60. Bianchi, M.E. & Agresti, A. HMG proteins: dynamic players in gene regulation and differentiation. Curr. Opin. Genet. Dev. 15, 496–506 (2005).

    Article  CAS  Google Scholar 

  61. Harrer, M., Luhrs, H., Bustin, M., Scheer, U. & Hock, R. Dynamic interaction of HMGA1a proteins with chromatin. J. Cell Sci. 117, 3459–3471 (2004).

    Article  CAS  Google Scholar 

  62. Muller, S., Ronfani, L. & Bianchi, M.E. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J. Intern. Med. 255, 332–343 (2004).

    Article  CAS  Google Scholar 

  63. Furusawa, T. et al. Down-regulation of nucleosomal binding protein HMGN1 expression during embryogenesis modulates Sox9 expression in chondrocytes. Mol. Cell. Biol. 26, 592–604 (2006).

    Article  CAS  Google Scholar 

  64. Alami, R. et al. Mammalian linker-histone subtypes differentially affect gene expression in vivo. Proc. Natl. Acad. Sci. USA 100, 5920–5925 (2003).

    Article  CAS  Google Scholar 

  65. Lee, H., Habas, R. & Abate-Shen, C. MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science 304, 1675–1678 (2004).

    Article  CAS  Google Scholar 

  66. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444–456 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Cancer Research, NCI, through the Intramural Research Program of the US National Institutes of Health. We thank M. Wittenberger, G. Gerlitz and D. Landsman for helpful comments on the manuscript and T. Misteli for critical comments, for numerous discussions on the topic and for providing access to his manuscripts before their publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bustin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catez, F., Ueda, T. & Bustin, M. Determinants of histone H1 mobility and chromatin binding in living cells. Nat Struct Mol Biol 13, 305–310 (2006). https://doi.org/10.1038/nsmb1077

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1077

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing