Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting

Abstract

Hrs has an essential role in sorting of monoubiquitinated receptors to multivesicular bodies for lysosomal degradation, through recognition of ubiquitinated receptors by its ubiquitin-interacting motif (UIM). Here, we present the structure of a complex of Hrs-UIM and ubiquitin at 1.7-Å resolution. Hrs-UIM forms a single α-helix, which binds two ubiquitin molecules, one on either side. These two ubiquitin molecules are related by pseudo two-fold screw symmetry along the helical axis of the UIM, corresponding to a shift by two residues on the UIM helix. Both ubiquitin molecules interact with the UIM in the same manner, using the Ile44 surface, with equal binding affinities. Mutational experiments show that both binding sites of Hrs-UIM are required for efficient degradative protein sorting. Hrs-UIM belongs to a new subclass of double-sided UIMs, in contrast to its yeast homolog Vps27p, which has two tandem single-sided UIMs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Hrs-UIM–ubiquitin complex.
Figure 2: Interaction modes of Hrs-UIM with two ubiquitin molecules.
Figure 3: SPR biosensor data from the UIM-ubiquitin interaction, with fitted curves shown.
Figure 4: Assay of EGF degradation.
Figure 5: Putative double-sided UIMs.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Di Fiore, P.P., Polo, S. & Hofmann, K. When ubiquitin meets ubiquitin receptors: a signalling connection. Nat. Rev. Mol. Cell Biol. 4, 491–497 (2003).

    Article  CAS  Google Scholar 

  2. Schnell, J.D. & Hicke, L. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J. Biol. Chem. 278, 35857–35860 (2003).

    Article  CAS  Google Scholar 

  3. Swanson, K.A., Kang, R.S., Stamenova, S.D., Hicke, L. & Radhakrishnan, I. Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J. 22, 4597–4606 (2003).

    Article  CAS  Google Scholar 

  4. Kang, R.S. et al. Solution structure of a CUE-ubiquitin complex reveals a conserved mode of ubiquitin binding. Cell 113, 621–630 (2003).

    Article  CAS  Google Scholar 

  5. Alam, S.L. et al. Ubiquitin interactions of NZF zinc fingers. EMBO J. 23, 1411–1421 (2004).

    Article  CAS  Google Scholar 

  6. Ohno, A. et al. Structure of the UBA domain of Dsk2p in complex with ubiquitin: molecular determinants for ubiquitin recognition. Structure 13, 521–532 (2005).

    Article  CAS  Google Scholar 

  7. Teo, H., Veprintsev, D.B. & Williams, R.L. Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins. J. Biol. Chem. 279, 28689–28696 (2004).

    Article  CAS  Google Scholar 

  8. Sundquist, W.I. et al. Ubiquitin recognition by the human TSG101 protein. Mol. Cell 13, 783–789 (2004).

    Article  CAS  Google Scholar 

  9. Wang, Q., Young, P. & Walters, K.J. Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. J. Mol. Biol. 348, 727–739 (2005).

    Article  CAS  Google Scholar 

  10. Mueller, T.D. & Feigon, J. Structural determinants for the binding of ubiquitin-like domains to the proteasome. EMBO J. 22, 4634–4645 (2003).

    Article  CAS  Google Scholar 

  11. Fujiwara, K. et al. Structure of the ubiquitin-interacting motif of S5a bound to the ubiquitin-like domain of HR23B. J. Biol. Chem. 279, 4760–4767 (2004).

    Article  CAS  Google Scholar 

  12. Kawasaki, M. et al. Molecular mechanism of ubiquitin recognition by GGA3 GAT domain. Genes Cells 10, 639–654 (2005).

    Article  CAS  Google Scholar 

  13. Fisher, R.D. et al. Structure and ubiquitin binding of the ubiquitin-interacting motif. J. Biol. Chem. 278, 28976–28984 (2003).

    Article  CAS  Google Scholar 

  14. Raiborg, C. & Stenmark, H. Hrs and endocytic sorting of ubiquitinated membrane proteins. Cell Struct. Funct. 27, 403–408 (2002).

    Article  CAS  Google Scholar 

  15. Raiborg, C., Rusten, T.E. & Stenmark, H. Protein sorting into multivesicular endosomes. Curr. Opin. Cell Biol. 15, 446–455 (2003).

    Article  CAS  Google Scholar 

  16. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat. Cell Biol. 4, 394–398 (2002).

    Article  CAS  Google Scholar 

  17. Shih, S.C. et al. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat. Cell Biol. 4, 389–393 (2002).

    Article  CAS  Google Scholar 

  18. Prag, G. et al. Mechanism of ubiquitin recognition by the CUE domain of Vps9p. Cell 113, 609–620 (2003).

    Article  CAS  Google Scholar 

  19. Polo, S. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455 (2002).

    Article  CAS  Google Scholar 

  20. Shekhtman, A. & Cowburn, D. A ubiquitin-interacting motif from Hrs binds to and occludes the ubiquitin surface necessary for polyubiquitination in monoubiquitinated proteins. Biochem. Biophys. Res. Commun. 296, 1222–1227 (2002).

    Article  CAS  Google Scholar 

  21. Hofmann, K. & Falquet, L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem. Sci. 26, 347–350 (2001).

    Article  CAS  Google Scholar 

  22. Sugiyama, S., Kishida, S., Chayama, K., Koyama, S. & Kikuchi, A. Ubiquitin-interacting motifs of Epsin are involved in the regulation of insulin-dependent endocytosis. J. Biochem. 137, 355–364 (2005).

    Article  CAS  Google Scholar 

  23. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  24. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol. Crystallogr. 50, 760–763 (1994).

  25. Brünger, A.T. et al. Crystallography & NMR system: a new software for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  26. Roussel, A. & Cambilleau, C. Turbo-Frodo. in Silicon Graphics Geometry, Partners Directory 77–79 (Silicon Graphics, Mountain View, California, USA, 1989).

    Google Scholar 

  27. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Merritt, E.A. & Murphy, M.E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  29. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  30. Bache, K.G., Raiborg, C., Mehlum, A. & Stenmark, H. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J. Biol. Chem. 278, 12513–12521 (2003).

    Article  CAS  Google Scholar 

  31. Raiborg, C., Bache, K.G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Protein 3000 project and by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan, as well as by the Norwegian Cancer Society, the Research Council of Norway and the Novo-Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soichi Wakatsuki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Sequences of synthesized DNA fragments for GST-UIM (PDF 9 kb)

Supplementary Table 2

Sequences of QuikChange primers for UIM mutants (PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirano, S., Kawasaki, M., Ura, H. et al. Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nat Struct Mol Biol 13, 272–277 (2006). https://doi.org/10.1038/nsmb1051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing