Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An mRNA-rRNA base-pairing mechanism for translation initiation in eukaryotes

Abstract

Base-pairing of messenger RNA to ribosomal RNA is a mechanism of translation initiation in prokaryotes. Although analogous base-pairing has been suggested to affect the translation of various eukaryotic mRNAs, direct evidence has been lacking. To test such base-pairing, we developed a yeast system that uses ribosomes containing a mouse-yeast hybrid 18S rRNA. Using this system, we demonstrate that a 9-nucleotide element found in the mouse Gtx homeodomain mRNA facilitates translation initiation by base-pairing to 18S rRNA. Various point mutations in the Gtx element and in either the hybrid or wild-type yeast 18S rRNAs confirmed the requirement for an intact complementary match. The presence of the Gtx element in various mRNAs suggests that this element affects the translation of groups of mRNAs. We discuss the possibility that other mRNA elements affect translation by base-pairing to different sites in the 18S rRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Gtx translational enhancer element is active in mammalian cells but inactive in yeast.
Figure 2: The Gtx TEE can function in yeast that express hybrid ribosomes containing mouse 18S rRNA.
Figure 3: Activity of the Gtx TEE requires a complementary match to mouse 18S rRNA.
Figure 4: The Gtx translational enhancer element can function in yeast when three nucleotides of the yeast 18S rRNA are mutated.

Similar content being viewed by others

References

  1. Mathews, M.B., Sonenberg, N. & Hershey, J.W. Origins and principles of translational control. in Translational Control of Gene Expression (eds. Sonenberg, N., Hershey, J.W. & Mathews, M.B.) Ch. 1, 1–31 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2000).

    Google Scholar 

  2. Kapp, L.D. & Lorsch, J.R. The molecular mechanics of eukaryotic translation. Annu. Rev. Biochem. 73, 657–704 (2004).

    Article  CAS  Google Scholar 

  3. Shine, J. & Dalgarno, L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 71, 1342–1346 (1974).

    Article  CAS  Google Scholar 

  4. Steitz, J.A. & Jakes, K. How ribosomes select initiator regions in mRNA: base pair formation between the 3′ terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 72, 4734–4738 (1975).

    Article  CAS  Google Scholar 

  5. Hui, A. & De Boer, H.A. Specialized ribosome system: preferential translation of a single mRNA species by subpopulation of mutated ribosomes in Escherichia coli. Proc. Natl. Acad. Sci. USA 84, 4762–4766 (1987).

    Article  CAS  Google Scholar 

  6. Vagner, S., Galy, B. & Pyronnet, S. Irresistible IRES: Attracting the translation machinery to internal ribosome entry sites. EMBO Rep. 2, 893–898 (2001).

    Article  CAS  Google Scholar 

  7. Jackson, R.J. A comparative view of initiation site selection mechanisms. in Translational Control of Gene Expression (eds. Sonenberg, N., Hershey, J.W. & Mathews, M.B.) Ch. 4, 127–183 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2000).

    Google Scholar 

  8. Matveeva, O.V. & Shabalina, S.A. Intermolecular mRNA-rRNA hybridization and the distribution of potential interaction regions in murine 18S rRNA. Nucleic Acids Res. 21, 1007–1011 (1993).

    Article  CAS  Google Scholar 

  9. Nicholson, R., Pelletier, J., Le, S.-Y. & Sonenberg, N. Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translation studies. J. Virol. 65, 5886–5894 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Scheper, G.C., Voorma, H.O. & Thomas, A.A. Base pairing with 18S ribosomal RNA in internal initiation ot translation. FEBS Lett. 352, 271–275 (1994).

    Article  CAS  Google Scholar 

  11. Mauro, V.P. & Edelman, G.M. rRNA-like sequences occur in diverse primary transcripts: implications for the control of gene expression. Proc. Natl. Acad. Sci. USA 94, 422–427 (1997).

    Article  CAS  Google Scholar 

  12. Tranque, P., Hu, M.C.-Y., Edelman, G.M. & Mauro, V.P. rRNA complementarity within mRNAs: A possible basis for mRNA-ribosome interactions and translational control. Proc. Natl. Acad. Sci. USA 95, 12238–12243 (1998).

    Article  CAS  Google Scholar 

  13. Hu, M.C.-Y., Tranque, P., Edelman, G.M. & Mauro, V.P. rRNA-complementarity in the 5′ UTR of mRNA specifying the Gtx homeodomain protein: evidence that base-pairing to 18S rRNA affects translational efficiency. Proc. Natl. Acad. Sci. USA 96, 1339–1344 (1999).

    Article  CAS  Google Scholar 

  14. Chappell, S.A., Edelman, G.M. & Mauro, V.P. A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc. Natl. Acad. Sci. USA 97, 1536–1541 (2000).

    Article  CAS  Google Scholar 

  15. Owens, G.C., Chappell, S.A., Mauro, V.P. & Edelman, G.M. Identification of two short internal ribosome entry sites selected from libraries of random oligonucleotides. Proc. Natl. Acad. Sci. USA 98, 1471–1476 (2001).

    Article  CAS  Google Scholar 

  16. Mauro, V.P. & Edelman, G.M. The ribosome filter hypothesis. Proc. Natl. Acad. Sci. USA 99, 12031–12036 (2002).

    Article  CAS  Google Scholar 

  17. Mignone, F. & Pesole, G. rRNA-like sequences in human mRNAs. Appl. Bioinformatics 1, 145–154 (2002).

    CAS  PubMed  Google Scholar 

  18. Chappell, S.A., Edelman, G.M. & Mauro, V.P. Biochemical and functional analysis of a 9-nucleotide RNA sequence that affects translation efficiency in eukaryotic cells. Proc. Natl. Acad. Sci. USA 101, 9590–9594 (2004).

    Article  CAS  Google Scholar 

  19. Chappell, S.A. & Mauro, V.P. The internal ribosome entry site (IRES) contained within the RNA-binding motif protein 3 (Rbm3) mRNA is composed of functionally distinct elements. J. Biol. Chem. 278, 33793–33800 (2003).

    Article  CAS  Google Scholar 

  20. Zeenko, V. & Gallie, D.R. Cap-independent translation of tobacco etch virus is conferred by an RNA pseudoknot in the 5′-leader. J. Biol. Chem. 280, 26813–26824 (2005).

    Article  CAS  Google Scholar 

  21. Akbergenov, R. et al. ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs. Nucleic Acids Res. 32, 239–247 (2004).

    Article  CAS  Google Scholar 

  22. Hellen, C.U. & Sarnow, P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 15, 1593–1612 (2001).

    Article  CAS  Google Scholar 

  23. Fux, C., Langer, D., Kelm, J.M., Weber, W. & Fussenegger, M. New-generation multicistronic expression platform: pTRIDENT vectors containing size-optimized IRES elements enable homing endonuclease-based cistron swapping into lentiviral expression vectors. Biotechnol. Bioeng. 86, 174–187 (2004).

    Article  CAS  Google Scholar 

  24. Reiser, J., Lai, Z., Zhang, X.Y. & Brady, R.O. Development of multigene and regulated lentivirus vectors. J. Virol. 74, 10589–10599 (2000).

    Article  CAS  Google Scholar 

  25. Thompson, J., Tapprich, W.E., Munger, C. & Dahlberg, A.E. Staphylococcus aureus domain V functions in Escherichia coli ribosomes provided a conserved interaction with domain IV is restored. RNA 7, 1076–1083 (2001).

    Article  CAS  Google Scholar 

  26. Spahn, C.M. et al. Structure of the 80S ribosome from Saccharomyces cerevisiae–tRNA-ribosome and subunit-subunit interactions. Cell 107, 373–386 (2001).

    Article  CAS  Google Scholar 

  27. Wai, H.H., Vu, L., Oakes, M. & Nomura, M. Complete deletion of yeast chromosomal rDNA repeats and integration of a new rDNA repeat: use of rDNA deletion strains for functional analysis of rDNA promoter elements in vivo. Nucleic Acids Res. 28, 3524–3534 (2000).

    Article  CAS  Google Scholar 

  28. Ausubel, F.M. et al. (eds.) Manipulation of plasmids from yeast cells. in Current Protocols in Molecular Biology Unit 13.9 (Wiley, Hoboken, New Jersey, USA, 2003).

    Google Scholar 

  29. Wimberly, B.T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    Article  CAS  Google Scholar 

  30. Yusupova, G.Z., Yusupov, M.M., Cate, J.H. & Noller, H.F. The path of messenger RNA through the ribosome. Cell 106, 233–241 (2001).

    Article  CAS  Google Scholar 

  31. Zhou, W., Edelman, G.M. & Mauro, V.P. Isolation and identification of short nucleotide sequences that affect translation initiation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 100, 4457–4462 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Nomura at the University of California, Irvine, California, USA for providing us with yeast strain NOY908 and plasmids pNOY353 and pNOY373. We also thank L Burman for excellent technical assistance and G.M. Edelman, B.A. Cunningham and J.A. Gally for valuable comments and critical reading of the manuscript. Funding was provided by the US National Institutes of Health (grant GM61725) and the G. Harold and Leila Y. Mathers Charitable Foundation to V.P.M, and by the Skaggs Institute for Chemical Biology to J.D., S.A.C. and W.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent P Mauro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression of hybrid rRNAs in yeast. (PDF 140 kb)

Supplementary Fig. 2

Quantitative northern blot analysis. (PDF 112 kb)

Supplementary Table 1

Expression vectors (PDF 78 kb)

Supplementary Table 2

Yeast strains and plasmids (PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dresios, J., Chappell, S., Zhou, W. et al. An mRNA-rRNA base-pairing mechanism for translation initiation in eukaryotes. Nat Struct Mol Biol 13, 30–34 (2006). https://doi.org/10.1038/nsmb1031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing