Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB

Abstract

The proteasome degrades some proteins, such as transcription factors Cubitus interruptus (Ci) and NF-κB, to generate biologically active protein fragments. Here we have identified and characterized the signals in the substrate proteins that cause this processing. The minimum signal consists of a simple sequence preceding a tightly folded domain in the direction of proteasome movement. The strength of the processing signal depends primarily on the complexity of the simple sequence rather than on amino acid identity, the resistance of the folded domain to unraveling by the proteasome and the spacing between the simple sequence and folded domain. We show that two unrelated transcription factors, Ci and NF-κB, use this mechanism to undergo partial degradation by the proteasome in vivo. These findings suggest that the mechanism is conserved evolutionarily and that processing signals may be widespread in regulatory proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A GRR in combination with a folded domain inhibits progression of proteasomal degradation.
Figure 2: Progression of proteasomal degradation can be inhibited by simple sequences.
Figure 3: The spacing of the simple sequence inserts relative to the folded domain determines fragment formation.
Figure 4: Simple sequence inserts can inhibit proteasome progression in both directions of degradation.
Figure 5: Processing of Ci by the proteasome in vitro.
Figure 6: Processing of Ci in vivo.
Figure 7: Processing of NF-κB precursor p105 depends on the presence of a folded Rel-homology domain and a GRR.

Similar content being viewed by others

References

  1. Glickman, M.H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Pickart, C.M. & Cohen, R.E. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol. 5, 177–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Larsen, C.N. & Finley, D. Protein translocation channels in the proteasome and other proteases. Cell 91, 431–434 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, C., Schwartz, M.P., Prakash, S., Iwakura, M. & Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 7, 627–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Prakash, S., Tian, L., Ratliff, K.S., Lehotzky, R.E. & Matouschek, A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 11, 830–837 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Nussbaum, A.K. et al. Cleavage motifs of the yeast 20S proteasome β subunits deduced from digests of enolase 1. Proc. Natl. Acad. Sci. USA 95, 12504–12509 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, C.H. et al. Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell 98, 305–316 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Jia, J. et al. Shaggy/GSK3 antagonizes Hedgehog signaling by regulating Cubitus interruptus. Nature 416, 548–552 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Palombella, V.J., Rando, O.J., Goldberg, A.L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78, 773–785 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Lum, L. & Beachy, P.A. The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Aza-Blanc, P., Ramirez-Weber, F.A., Laget, M.P., Schwartz, C. & Kornberg, T.B. Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Y., Gallaher, N., Goodman, R.H. & Smolik, S.M. Protein kinase A directly regulates the activity and proteolysis of Cubitus interruptus. Proc. Natl. Acad. Sci. USA 95, 2349–2354 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Price, M.A. & Kalderon, D. Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell 108, 823–835 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Fan, C.M. & Maniatis, T. Generation of p50 subunit of NF-κB by processing of p105 through an ATP-dependent pathway. Nature 354, 395–398 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Henkel, T. et al. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-κB subunit. Cell 68, 1121–1133 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Rice, N.R., MacKichan, M.L. & Israel, A. The precursor of NF-κB p50 has IκB-like functions. Cell 71, 243–253 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Orian, A. et al. SCF(β-TrCP) ubiquitin ligase-mediated processing of NF-κB p105 requires phosphorylation of its C-terminus by IκB kinase. EMBO J. 19, 2580–2591 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Rape, M. & Jentsch, S. Taking a bite: proteasomal protein processing. Nat. Cell Biol. 4, E113–E116 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Lin, L. & Ghosh, S. A glycine-rich region in NF-κB p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell. Biol. 16, 2248–2254 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Orian, A. et al. Structural motifs involved in ubiquitin-mediated processing of the NF-κB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. Mol. Cell. Biol. 19, 3664–3673 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin, L., DeMartino, G.N. & Greene, W.C. Cotranslational biogenesis of NF-κB p50 by the 26S proteasome. Cell 92, 819–828 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Sears, C., Olesen, J., Rubin, D., Finley, D. & Maniatis, T. NF-κB p105 processing via the ubiquitin-proteasome pathway. J. Biol. Chem. 273, 1409–1419 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Methot, N. & Basler, K. Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of Cubitus interruptus. Cell 96, 819–831 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Johnston, J.A., Johnson, E.S., Waller, P.R.H. & Varshavsky, A. Methotrexate inhibits proteolysis of dihydrofolate reductase by the N-end rule pathway. J. Biol. Chem. 270, 8172–8178 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Lin, L., DeMartino, G.N. & Greene, W.C. Cotranslational dimerization of the Rel homology domain of NF-κB1 generates p50-p105 heterodimers and is required for effective p50 production. EMBO J. 19, 4712–4722 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Endo, T. & Schatz, G. Latent membrane perturbation activity of a mitochondrial precursor protein is exposed by unfolding. EMBO J. 7, 1153–1158 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iwakura, M., Nakamura, T., Yamane, C. & Maki, K. Systematic circular permutation of an entire protein reveals essential folding elements. Nat. Struct. Biol. 7, 580–585 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Wootton, J.C. & Federhen, S. Analysis of compositionally biased regions in sequence databases. Methods Enzymol. 266, 554–571 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Gonda, D.K. et al. Universality and structure of the N-end rule. J. Biol. Chem. 264, 16700–16712 (1989).

    CAS  PubMed  Google Scholar 

  34. Bachmair, A. & Varshavsky, A. The degradation signal in a short-lived protein. Cell 56, 1019–1032 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Fukumoto, T., Watanabe-Fukunaga, R., Fujisawa, K., Nagata, S. & Fukunaga, R. The fused protein kinase regulates Hedgehog-stimulated transcriptional activation in Drosophila Schneider 2 cells. J. Biol. Chem. 276, 38441–38448 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Sharipo, A., Imreh, M., Leonchiks, A., Imreh, S. & Masucci, M.G. A minimal glycine-alanine repeat prevents the interaction of ubiquitinated IκBα with the proteasome: a new mechanism for selective inhibition of proteolysis. Nat. Med. 4, 939–944 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, M. & Coffino, P. Repeat sequence of Epstein-Barr virus–encoded nuclear antigen 1 protein interrupts proteasome substrate processing. J. Biol. Chem. 279, 8635–8641 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Ou, C.Y., Lin, Y.F., Chen, Y.J. & Chien, C.T. Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development. Genes Dev. 16, 2403–2414 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heusch, M., Lin, L., Geleziunas, R. & Greene, W.C. The generation of NFκB2 p52: mechanism and efficiency. Oncogene 18, 6201–6208 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Sasaki, H., Nishizaki, Y., Hui, C., Nakafuku, M. & Kondoh, H. Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 126, 3915–3924 (1999).

    CAS  PubMed  Google Scholar 

  41. Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Kenniston, J.A., Baker, T.A. & Sauer, R.T. Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing. Proc. Natl. Acad. Sci. USA 102, 1390–1395 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kyte, J. & Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

    Article  CAS  PubMed  Google Scholar 

  44. Gasteiger, E. et al. Protein identification and analysis tools on the ExPASy server. in The Proteomics Protocols Handbook (ed. Walker, J.M.) 571–607 (Humana Press, Totowa, New Jersey, USA, 2005).

    Chapter  Google Scholar 

  45. Fan, C.M. & Maniatis, T. Two different virus-inducible elements are required for human β-interferon gene regulation. EMBO J. 8, 101–110 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is dedicated to Irving M. Klotz. We thank R.W. Carthew and M. Feller for help and advice with the Ci cell culture experiments and C. Horvath and J.-P. Parisien for help with the NF-κB cell culture experiments. We also thank J. Widom, R.W. Carthew, C. Horvath, S. Prakash and S. Fishbain for advice. We are grateful to N. Shah and C. Malalis for constructing several plasmids. The work was supported by grant GM063004 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Matouschek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Degradation depends on ubiquitin proteasome pathway. (PDF 89 kb)

Supplementary Fig. 2

Gel filtration. (PDF 42 kb)

Supplementary Fig. 3

Spacing requirement. (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, L., Holmgren, R. & Matouschek, A. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB. Nat Struct Mol Biol 12, 1045–1053 (2005). https://doi.org/10.1038/nsmb1018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1018

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing