Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV-2 genomic RNA contains a novel type of IRES located downstream of its initiation codon

Abstract

Eukaryotic translation initiation begins with assembly of a 48S ribosomal complex at the 5′ cap structure or at an internal ribosomal entry segment (IRES). In both cases, ribosomal positioning at the AUG codon requires a 5′ untranslated region upstream from the initiation site. Here, we report that translation of the genomic RNA of human immunodeficiency virus type 2 takes place by attachment of the 48S ribosomal preinitiation complex to the coding region, with no need for an upstream 5′ untranslated RNA sequence. This unusual mechanism is mediated by an RNA sequence that has features of an IRES with the unique ability to recruit ribosomes upstream from its core domain. A combination of translation assays and structural studies reveal that sequences located 50 nucleotides downstream of the AUG codon are crucial for IRES activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of two novel isoforms of HIV-2 Gag.
Figure 2: Cap-independent expression of Gag p57, p50 and p44.
Figure 3: The coding region of HIV-2 has an IRES activity in HeLa cells.
Figure 4: A leaderless HIV-2 genomic RNA is efficiently expressed in RRL.
Figure 5: Secondary structure model for the IRES in the gag coding region, colored according to accessibility to structure probes.

Similar content being viewed by others

References

  1. Bock, P.J. & Markovitz, D.M. Infection with HIV-2. AIDS 15 (Suppl. 5), S35–S45 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lemey, P. et al. Tracing the origin and history of the HIV-2 epidemic. Proc. Natl. Acad. Sci. USA 100, 6588–6592 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Butsch, M. & Boris-Lawrie, K. Destiny of unspliced retroviral RNA: ribosome and/or virion? J. Virol. 76, 3089–3094 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reeves, J.D. & Doms, R.W. Human immunodeficiency virus type 2. J. Gen. Virol. 83, 1253–1265 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Gallie, D.R. Protein-protein interactions required during translation. Plant Mol. Biol. 50, 949–970 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Dever, T.E. Translation initiation: adept at adapting. Trends Biochem. Sci. 24, 398–403 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Pestova, T.V. et al. Molecular mechanisms of translation initiation in eukaryotes. Proc. Natl. Acad. Sci. USA 98, 7029–7036 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Proud, C.G. Control of the translational machinery in mammalian cells. Eur. J. Biochem. 269, 5337 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Pestova, T.V. & Kolupaeva, V.G. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16, 2906–2922 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Merrick, W.C. Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332, 1–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Stoneley, M. & Willis, A.E. Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23, 3200–3207 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Spahn, C.M. et al. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell 118, 465–475 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Kieft, J.S., Zhou, K., Jubin, R. & Doudna, J.A. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7, 194–206 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Costantino, D. & Kieft, J.S. A preformed compact ribosome-binding domain in the cricket paralysis-like virus IRES RNAs. RNA 11, 332–343 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brasey, A. et al. The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J. Virol. 77, 3939–3949 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buck, C.B. et al. The human immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site. J. Virol. 75, 181–191 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lorsch, J.R. & Herschlag, D. Kinetic dissection of fundamental processes of eukaryotic translation initiation in vitro. EMBO J. 18, 6705–6717 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Draper, D.E. A guide to ions and RNA structure. RNA 10, 335–343 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Michel, F. Some questions concerning RNA folding. in Folding and Self-Assembly of Biological Macromolecules (eds. Westhof, E. & Hardy, N.) 127–178 (World Scientific Publishing, 2004).

    Chapter  Google Scholar 

  21. Damgaard, C.K., Andersen, E.S., Knudsen, B., Gorodkin, J. & Kjems, J. RNA interactions in the 5′ region of the HIV-1 genome. J. Mol. Biol. 336, 369–379 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Abbink, T.E. & Berkhout, B. A novel long distance base-pairing interaction in human immunodeficiency virus type 1 RNA occludes the Gag start codon. J. Biol. Chem. 278, 11601–11611 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Paillart, J.C., Skripkin, E., Ehresmann, B., Ehresmann, C. & Marquet, R. In vitro evidence for a long range pseudoknot in the 5′-untranslated and matrix coding regions of HIV-1 genomic RNA. J. Biol. Chem. 277, 5995–6004 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Paillart, J.C. et al. First snapshots of the HIV-1 RNA structure in infected cells and in virions. J. Biol. Chem. 279, 48397–48403 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Ohlmann, T., Pain, V.M., Wood, W., Rau, M. & Morley, S.J. The proteolytic cleavage of eukaryotic initiation factor (eIF) 4G is prevented by eIF4E binding protein (PHAS-I; 4E–BP1) in the reticulocyte lysate. EMBO J. 16, 844–855 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohlmann, T., Rau, M., Morley, S.J. & Pain, V.M. Proteolytic cleavage of initiation factor eIF-4 gamma in the reticulocyte lysate inhibits translation of capped mRNAs but enhances that of uncapped mRNAs. Nucleic Acids Res. 23, 334–340 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ohlmann, T., Rau, M., Pain, V.M. & Morley, S.J. The C-terminal domain of eukaryotic protein synthesis initiation factor (eIF) 4G is sufficient to support cap-independent translation in the absence of eIF4E. EMBO J. 15, 1371–1382 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Borman, A.M. et al. elF4G and its proteolytic cleavage products: effect on initiation of protein synthesis from capped, uncapped, and IRES-containing mRNAs. RNA 3, 186–196 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ziegler, E., Borman, A.M., Kirchweger, R., Skern, T. & Kean, K.M. Foot-and-mouth disease virus Lb proteinase can stimulate rhinovirus and enterovirus IRES-driven translation and cleave several proteins of cellular and viral origin. J. Virol. 69, 3465–3474 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Berkhout, B. Structure and function of the human immunodeficiency virus leader RNA. Prog. Nucleic Acid Res. Mol. Biol. 54, 1–34 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Griffin, S.D., Allen, J.F. & Lever, A.M. The major human immunodeficiency virus type 2 (HIV-2) packaging signal is present on all HIV-2 RNA species: cotranslational RNA encapsidation and limitation of Gag protein confer specificity. J. Virol. 75, 12058–12069 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaye, J.F. & Lever, A.M. Nonreciprocal packaging of human immunodeficiency virus type 1 and type 2 RNA: a possible role for the p2 domain of Gag in RNA encapsidation. J. Virol. 72, 5877–5885 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wehrly, K. & Chesebro, B. p24 antigen capture assay for quantification of human immunodeficiency virus using readily available inexpensive reagents. Methods 12, 288–293 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Kent, K.A. et al. Production and of monoclonal antibodies to simian immunodeficiency virus envelope glycoproteins. AIDS 5, 829–836 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Berlioz, C. & Darlix, J.L. An internal ribosomal entry mechanism promotes translation of murine leukemia virus gag polyprotein precursors. J. Virol. 69, 2214–2222 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gallie, D.R., Ling, J., Niepel, M., Morley, S.J. & Pain, V.M. The role of 5′-leader length, secondary structure and PABP concentration on cap and poly(A) tail function during translation in Xenopus oocytes. Nucleic Acids Res. 28, 2943–2953 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ohlmann, T., Lopez-Lastra, M. & Darlix, J.L. An internal ribosome entry segment promotes translation of the simian immunodeficiency virus genomic RNA. J. Biol. Chem. 275, 11899–11906 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Prevot, D. et al. Characterization of a novel RNA-binding region of eIF4GI critical for ribosomal scanning. EMBO J. 22, 1909–1921 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, C.A. & Okayama, H. Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques 6, 632–638 (1988).

    CAS  PubMed  Google Scholar 

  40. Ramesh, N. & Osborne, W.R. Assay of neomycin phosphotransferase activity in cell extracts. Anal. Biochem. 193, 316–318 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Butcher, S.E. & Burke, J.M. Structure-mapping of the hairpin ribozyme. Magnesium-dependent folding and evidence for tertiary interactions within the ribozyme-substrate complex. J. Mol. Biol. 244, 52–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Weill, L., Louis, D. & Sargueil, B. Selection and evolution of NTP-specific aptamers. Nucleic Acids Res. 32, 5045–5058 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The following reagents were obtained through the AIDS Research and Reference Reagent Program, National Institute of Allergy and Infectious Disease, US National Institutes of Health (Bethesda, Maryland, USA): monoclonal antibodies (183-H12-5C) from B. Chesebro and K. Wehrly, and SIV Gag monoclonal antibody (KK59) from K. Kent and C. Powell. We would like to thank F. Michel for helpful discussion about three-dimensional RNA structures and P.F. Ray for critical reading of the manuscript. C.H.H. and L.W. are funded by MENRT, SIDACTION and FRM grants and work in our laboratory is supported by grants from the ANRS, CNRS, INSERM, an ACI and TRIOH from EC sixth PCRD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruno Sargueil or Théophile Ohlmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression of Gag p57, p50 and p44 in RRL pretreated with the FMDV L protease. (PDF 144 kb)

Supplementary Fig. 2

Stability and integrity of the bicistronic RNA constructs in the RRL. (PDF 122 kb)

Supplementary Figure 3

Stability and integrity of the leaderless RNA constructs in the RRL. (PDF 132 kb)

Supplementary Fig. 4

Example of chemical probing experiment. (PDF 171 kb)

Supplementary Fig. 5

Removal of the first 50 nucleotides of the coding region drastically impairs initiation at the first AUG of gag. (PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbreteau, C., Weill, L., Décimo, D. et al. HIV-2 genomic RNA contains a novel type of IRES located downstream of its initiation codon. Nat Struct Mol Biol 12, 1001–1007 (2005). https://doi.org/10.1038/nsmb1011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1011

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing