Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A single spacer nucleotide determines the specificities of two mRNA regulatory proteins

Abstract

Regulation of messenger RNA is crucial in many contexts, including development, memory and cell growth. The 3′ untranslated region is a rich repository of regulatory elements that bind proteins and microRNAs. Here we focus on PUF proteins, an important family of mRNA regulatory proteins crucial in stem-cell proliferation, pattern formation and synaptic plasticity. We show that two Caenorhabditis elegans PUF proteins, FBF and PUF-8, differ in RNA-binding specificity. FBF requires the presence of a single 'extra' nucleotide in the middle of an eight-nucleotide site, whereas PUF-8 requires its absence. A discrete protein segment is responsible for the difference. We propose that a structural distortion in the central region of FBF imposes the requirement for the additional nucleotide and that this mode of PUF specificity may be common. We suggest that new specificities can be designed and selected using the PUF scaffold.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A single nucleotide is a key determinant of the RNA-binding specificity of two PUF proteins.
Figure 2: A single nucleotide determines RNA-binding specificity in vitro.
Figure 3: RNA selection in yeast reveals that FBF requires a single 'extra' nucleotide.
Figure 4: Effect of substitutions at the 'extra' nucleotide position on binding.
Figure 5: Alignment of PUF repeats and RNA.
Figure 6: FBF RNA-binding specificity maps to a discrete, central region of the protein.
Figure 7: Model of FBF and PUF-8 interaction with RNA.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

GenBank/EMBL/DDBJ

References

  1. Sonenberg, N., Hershey, J.W.B. & Mathews, M. (eds.) Translational Control (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1996).

    Google Scholar 

  2. Kuersten, S. & Goodwin, E.B. The power of the 3′ UTR: translational control and development. Nat. Rev. Genet. 4, 626–637 (2003).

    CAS  PubMed  Google Scholar 

  3. Sachs, A.B., Sarnow, P. & Hentze, M.W. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89, 831–838 (1997).

    CAS  PubMed  Google Scholar 

  4. van Hoof, A. & Parker, R. Messenger RNA degradation: beginning at the end. Curr. Biol. 12, R285–R287 (2002).

    CAS  PubMed  Google Scholar 

  5. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    CAS  PubMed  Google Scholar 

  6. Grabowski, P.J. & Black, D.L. Alternative RNA splicing in the nervous system. Prog. Neurobiol. 65, 289–308 (2001).

    CAS  PubMed  Google Scholar 

  7. Wickens, M., Kimble, J. & Strickland, S. Translational control of developmental decisions. Translational Control (eds. Sonenberg, N., Hershey, J.W.B. & Mathews, M.) 411–450 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1996).

  8. Wickens, M., Bernstein, D.S., Kimble, J. & Parker, R.A. PUF family portrait: 3′UTR regulation as a way of life. Trends Genet. 18, 150–157 (2002).

    CAS  PubMed  Google Scholar 

  9. Edwards, T.A., Pyle, S.E., Wharton, R.P. & Aggarwal, A.K. Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 105, 281–289 (2001).

    CAS  PubMed  Google Scholar 

  10. Wang, X., Zamore, P.D. & Hall, T.M. Crystal structure of a Pumilio homology domain. Mol. Cell 7, 855–865 (2001).

    CAS  PubMed  Google Scholar 

  11. Wang, X., McLachlan, J., Zamore, P.D. & Hall, T.M. Modular recognition of RNA by a human pumilio-homology domain. Cell 110, 501–512 (2002).

    CAS  PubMed  Google Scholar 

  12. Gerber, A.P., Herschlag, D. & Brown, P.O. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol. 2, E79 (2004).

    PubMed  PubMed Central  Google Scholar 

  13. Bernstein, D., Hook, B., Hajarnavis, A., Opperman, L. & Wickens, M. Binding specificity and mRNA targets of a C. elegans PUF protein, FBF-1. RNA 11, 447–458 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, B. et al. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390, 477–484 (1997).

    CAS  PubMed  Google Scholar 

  15. Crittenden, S.L. et al. A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417, 660–663 (2002).

    CAS  PubMed  Google Scholar 

  16. Lamont, L.B., Crittenden, S.L., Bernstein, D., Wickens, M. & Kimble, J. FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev. Cell 7, 697–707 (2004).

    CAS  PubMed  Google Scholar 

  17. Thompson, B.E. et al. Dose-dependent control of proliferation and sperm specification by FOG-1/CPEB. Development 132, 3471–3481 (2005).

    CAS  PubMed  Google Scholar 

  18. Bernstein, D.S., Buter, N., Stumpf, C. & Wickens, M. Analyzing mRNA-protein complexes using a yeast three-hybrid system. Methods 26, 123–141 (2002).

    CAS  PubMed  Google Scholar 

  19. Hook, B., Bernstein, D., Zhang, B. & Wickens, M. RNA-protein interactions in the yeast three-hybrid system: affinity, sensitivity, and enhanced library screening. RNA 11, 227–233 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Groves, M.R. & Barford, D. Topological characteristics of helical repeat proteins. Curr. Opin. Struct. Biol. 9, 383–389 (1999).

    CAS  PubMed  Google Scholar 

  21. Huber, A.H., Nelson, W.J. & Weis, W.I. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90, 871–882 (1997).

    CAS  PubMed  Google Scholar 

  22. Groves, M.R., Hanlon, N., Turowski, P., Hemmings, B.A. & Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96, 99–110 (1999).

    CAS  PubMed  Google Scholar 

  23. Huxford, T., Huang, D.B., Malek, S. & Ghosh, G. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 95, 759–770 (1998).

    CAS  PubMed  Google Scholar 

  24. Jacobs, M.D. & Harrison, S.C. Structure of an IkappaBalpha/NF-kappaB complex. Cell 95, 749–758 (1998).

    CAS  PubMed  Google Scholar 

  25. Graham, T.A., Weaver, C., Mao, F., Kimelman, D. & Xu, W. Crystal structure of a beta-catenin/Tcf complex. Cell 103, 885–896 (2000).

    CAS  PubMed  Google Scholar 

  26. Kraemer, B. et al. NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr. Biol. 9, 1009–1018 (1999).

    CAS  PubMed  Google Scholar 

  27. Luitjens, C., Gallegos, M., Kraemer, B., Kimble, J. & Wickens, M. CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev. 14, 2596–2609 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Eckmann, C.R., Kraemer, B., Wickens, M. & Kimble, J. GLD-3, a bicaudal-C homolog that inhibits FBF to control germline sex determination in C. elegans. Dev. Cell 3, 697–710 (2002).

    CAS  PubMed  Google Scholar 

  29. Sonoda, J. & Wharton, R.P. Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev. 13, 2704–2712 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chattopadhyay, S., Garcia-Mena, J., DeVito, J., Wolska, K. & Das, A. Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda. Proc. Natl. Acad. Sci. USA 92, 4061–4065 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mogridge, J., Mah, T.F. & Greenblatt, J. A protein-RNA interaction network facilitates the template-independent cooperative assembly on RNA polymerase of a stable antitermination complex containing the lambda N protein. Genes Dev. 9, 2831–2845 (1995).

    CAS  PubMed  Google Scholar 

  32. Legault, P., Li, J., Mogridge, J., Kay, L.E. & Greenblatt, J. NMR structure of the bacteriophage lambda N peptide/boxB RNA complex: recognition of a GNRA fold by an arginine-rich motif. Cell 93, 289–299 (1998).

    CAS  PubMed  Google Scholar 

  33. Koudelka, G.B., Harrison, S.C. & Ptashne, M. Effect of non-contacted bases on the affinity of 434 operator for 434 repressor and Cro. Nature 326, 886–888 (1987).

    CAS  PubMed  Google Scholar 

  34. Koudelka, G.B., Harbury, P., Harrison, S.C. & Ptashne, M. DNA twisting and the affinity of bacteriophage 434 operator for bacteriophage 434 repressor. Proc. Natl. Acad. Sci. USA 85, 4633–4637 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Olivas, W. & Parker, R. The Puf3 protein is a transcript-specific regulator of mRNA degradation in yeast. EMBO J. 19, 6602–6611 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tadauchi, T., Matsumoto, K., Herskowitz, I. & Irie, K. Post-transcriptional regulation through the HO 3′-UTR by Mpt5, a yeast homolog of Pumilio and FBF. EMBO J. 20, 552–561 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zamore, P.D., Williamson, J.R. & Lehmann, R. The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 3, 1421–1433 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wharton, R.P. & Struhl, G. RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell 67, 955–967 (1991).

    CAS  PubMed  Google Scholar 

  39. Sonoda, J. & Wharton, R.P. Drosophila Brain Tumor is a translational repressor. Genes Dev. 15, 762–773 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Kimble and Wickens laboratories for their suggestions, advice and comments on the manuscript, and we appreciate the suggestions of J. Kimble and S. Butcher. Figures were prepared by the University of Wisconsin Biochemistry Media Center. This work was supported by US National Institutes of Health grants to M.W. L.O. was supported by a US National Institutes of Health Molecular Biology Training Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Wickens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Alignment of RNA binding region of PUF proteins. (PDF 120 kb)

Supplementary Fig. 2

GST–FBF-2 and GST–Puf-8 proteins. (PDF 39 kb)

Supplementary Fig. 3

Junction sequences in FBF-1–PUF-8 chimeras. (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opperman, L., Hook, B., DeFino, M. et al. A single spacer nucleotide determines the specificities of two mRNA regulatory proteins. Nat Struct Mol Biol 12, 945–951 (2005). https://doi.org/10.1038/nsmb1010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing