Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Prion strains under the magnifying glass

Prion 'strains', multiple conformations of the same misfolded protein, have captured great interest because of their role in transmission of mad cow disease to humans. Prion strains have also been observed in yeast, where self-propagating protein folds are responsible for inheritable traits. Recent findings reveal an exciting new insight into the structural basis of this phenomenon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental strategy used to probe the structure of Sup35 prion strains by hydrogen-deuterium exchange.
Figure 2: Structural models of the Sup35 protein.

References

  1. Prusiner, S.B. Science 216, 136–144 (1982).

    Article  CAS  Google Scholar 

  2. Prusiner, S.B. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  Google Scholar 

  3. Collinge, J. Annu. Rev. Neurosci. 24, 519–550 (2001).

    Article  CAS  Google Scholar 

  4. Wickner, R.B. et al. Genes Dev. 18, 470–485 (2004).

    Article  CAS  Google Scholar 

  5. Chien, P., Weissman, J.S. & DePace, A.H. Annu. Rev. Biochem. 73, 617–656 (2004).

    Article  CAS  Google Scholar 

  6. Toyama, B.H., Kelly, M.J., Gross, J.D. & Weissman, J.S. Nature 449, 233–237 (2007).

    Article  CAS  Google Scholar 

  7. Silveira, J.R. et al. Nature 437, 257–261 (2005).

    Article  CAS  Google Scholar 

  8. Tycko, R. Curr. Opin. Struct. Biol. 14, 96–103 (2004).

    Article  CAS  Google Scholar 

  9. Nelson, R. et al. Nature 435, 773–778 (2005).

    Article  CAS  Google Scholar 

  10. Sawaya, M.R. et al. Nature 447, 453–457 (2007).

    Article  CAS  Google Scholar 

  11. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J.S. Nature 428, 323–328 (2004).

    Article  CAS  Google Scholar 

  12. Jones, E.M. & Surewicz, W.K. Cell 121, 63–72 (2005).

    Article  CAS  Google Scholar 

  13. Krishnan, R. & Lindquist, S.L. Nature 435, 765–772 (2005).

    Article  CAS  Google Scholar 

  14. Shewmaker, F., Wickner, R.B. & Tycko, R. Proc. Natl. Acad. Sci. USA 103, 19754–19759 (2006).

    Article  CAS  Google Scholar 

  15. Hoshino, M. et al. Nat. Struct. Biol. 9, 332–336 (2002).

    Article  CAS  Google Scholar 

  16. Luhrs, T. et al. Proc. Natl. Acad. Sci. USA 102, 17342–17347 (2005).

    Article  CAS  Google Scholar 

  17. Kuwata, K. et al. Proc. Natl. Acad. Sci. USA 100, 14790–14795 (2003).

    Article  CAS  Google Scholar 

  18. Tanaka, M., Collins, S.R., Toyama, B.H. & Weissman, J.S. Nature 442, 585–589 (2006).

    Article  CAS  Google Scholar 

  19. Shkundina, I.S., Kushnirov, V.V., Tuite, M.F. & Ter-Avanesyan, M.D. Genetics 172, 827–835 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobb, N., Surewicz, W. Prion strains under the magnifying glass. Nat Struct Mol Biol 14, 882–884 (2007). https://doi.org/10.1038/nsmb1007-882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1007-882

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing