Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

eIF2α kinases provide a new solution to the puzzle of substrate specificity

The stress-activated protein kinases PKR and GCN2 regulate protein synthesis by phosphorylating the α subunit of translation initiation factor 2. Three recent studies reveal the molecular basis for the exquisite substrate specificity of this family of kinases and address the role of interlobe flexibility in kinase activation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of PKR and its effect on cell processes.

References

  1. Hinnebusch, A.G. Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes-in Translational Control of Gene Expression (eds. Sonenberg, N., Hershey, J.W.B. & Mathews, M.B.) 185–243 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2000).

    Google Scholar 

  2. Lu, P.D., Harding, H.P. & Ron, D. J. Cell Biol. 167, 27–33 (2004).

    Article  CAS  Google Scholar 

  3. Vattem, K.M. & Wek, R.C. Proc. Natl. Acad. Sci. USA 101, 11269–11274 (2004).

    Article  CAS  Google Scholar 

  4. Proud, C.G. Semin. Cell Dev. Biol. 16, 3–12 (2005).

    Article  CAS  Google Scholar 

  5. Dar, A.C., Dever, T.E. & Sicheri, F. Cell 122, 887–900 (2005).

    Article  CAS  Google Scholar 

  6. Dey, M. et al. Cell 122, 901–913 (2005).

    Article  CAS  Google Scholar 

  7. Padyana, A.K., Qiu, H., Roll-Mecak, A., Hinnebusch, A.G. & Burley, S.K. J. Biol. Chem. 280, 29289–29299 (2005).

    Article  CAS  Google Scholar 

  8. Kostura, M. & Mathews, M.B. Mol. Cell. Biol. 9, 1576–1586 (1989).

    Article  CAS  Google Scholar 

  9. Zhang, F. et al. J. Biol. Chem. 276, 24946–24958 (2001).

    Article  CAS  Google Scholar 

  10. Ung, T.L., Cao, C., Lu, J., Ozato, K. & Dever, T.E. EMBO J. 20, 3728–3737 (2001).

    Article  CAS  Google Scholar 

  11. Hubbard, S.R. Nat. Rev. Mol. Cell Biol. 5, 464–471 (2004).

    Article  CAS  Google Scholar 

  12. Romano, P.R. et al. Mol. Cell. Biol. 18, 2282–2297 (1998).

    Article  CAS  Google Scholar 

  13. Mellor, H. & Proud, C.G. Biochem. Biophys. Res. Commun. 178, 430–437 (1991).

    Article  CAS  Google Scholar 

  14. Dar, A.C. & Sicheri, F. Mol. Cell 10, 295–305 (2002).

    Article  CAS  Google Scholar 

  15. Kawagishi-Kobayashi, M., Silverman, J.B., Ung, T.K. & Dever, T.E. Mol. Cell. Biol. 17, 4146–4158 (1997).

    Article  CAS  Google Scholar 

  16. Dey, M. et al. Mol. Cell. Biol. 25, 3063–3075 (2005).

    Article  CAS  Google Scholar 

  17. Dhaliwal, S. & Hoffman, D.W. J. Mol. Biol. 334, 187–195 (2003).

    Article  CAS  Google Scholar 

  18. Nonato, M.C., Widom, J. & Clardy, J. J. Biol. Chem. 277, 17057–17061 (2002).

    Article  CAS  Google Scholar 

  19. Ito, T., Marintchev, A. & Wagner, G. Structure (Camb). 12, 1693–1704 (2004).

    Article  CAS  Google Scholar 

  20. Qiu, H., Garcia-Barrio, M.T. & Hinnebusch, A.G. Mol. Cell. Biol. 18, 2697–2711 (1998).

    Article  CAS  Google Scholar 

  21. Wek, S.A., Zhu, S. & Wek, R.C. Mol. Cell. Biol. 15, 4497–4506 (1995).

    Article  CAS  Google Scholar 

  22. Qiu, H., Dong, J., Hu, C., Francklyn, C.S. & Hinnebusch, A.G. EMBO J. 20, 1425–1438 (2001).

    Article  CAS  Google Scholar 

  23. Qiu, H., Hu, C., Dong, J. & Hinnebusch, A.G. Genes Dev. 16, 1271–1280 (2002).

    Article  CAS  Google Scholar 

  24. Johnson, L., Lowe, E., Noble, M. & Owen, D. FEBS Lett. 430, 1–11 (1998).

    Article  CAS  Google Scholar 

  25. Huse, M. & Kuriyan, J. Cell 109, 275–282 (2002).

    Article  CAS  Google Scholar 

  26. Nolen, B., Taylor, S. & Ghosh, G. Mol. Cell 15, 661–675 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinnebusch, A. eIF2α kinases provide a new solution to the puzzle of substrate specificity. Nat Struct Mol Biol 12, 835–838 (2005). https://doi.org/10.1038/nsmb1005-835

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1005-835

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing