Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

RNase II structure completes group portrait of 3′ exoribonucleases

The structure of Escherichia coli RNase II is the first in the broadly conserved RNB family of exoribonucleases. It explains the catalytic properties of RNase II itself and provides insight into an important eukaryotic RNA degradation and processing complex, the exosome.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: One problem, three solutions: 3′→5′ exoribonucleases from three families have different structures but related functions.

Accession codes

Accessions

Protein Data Bank

References

  1. Frazão, C. et al. Nature, published online 6 Sep 2006 (doi: 10.1038/nature05080).

  2. Deutscher, M.P. & Li, Z. Prog. Nucleic Acid Res. Mol. Biol. 66, 67–105 (2001).

    Article  CAS  Google Scholar 

  3. van Hoof, A., Lennertz, P. & Parker, R. EMBO J. 19, 1357–1365 (2000).

    Article  CAS  Google Scholar 

  4. Mian, I.S. Nucleic Acids Res. 25, 3187–3195 (1997).

    Article  CAS  Google Scholar 

  5. Zuo, Y. & Deutscher, M.P. Nucleic Acids Res. 29, 1017–1026 (2001).

    Article  CAS  Google Scholar 

  6. Moser, M.J., Holley, W.R., Chatterjee, A. & Mian, I.S. Nucleic Acids Res. 25, 5110–5118 (1997).

    Article  CAS  Google Scholar 

  7. Amblar, M. & Arraiano, C.M. FEBS J. 272, 363–374 (2005).

    Article  CAS  Google Scholar 

  8. Cannistraro, V.J. & Kennell, D. J. Mol. Biol. 243, 930–943 (1994).

    Article  CAS  Google Scholar 

  9. Amblar, M., Barbas, A., Fialho, A.M. & Arraiano, C.M. J. Mol. Biol. 360, 921–933 (2006).

    Article  CAS  Google Scholar 

  10. Cheng, Z.F. & Deutscher, M.P. Mol. Cell 17, 313–318 (2005).

    Article  CAS  Google Scholar 

  11. Dziembowski, A. et al. J. Biol. Chem. 278, 1603–1611 (2003).

    Article  CAS  Google Scholar 

  12. Uesono, Y., Toh-e, A. & Kikuchi, Y. J. Biol. Chem. 272, 16103–16109 (1997).

    Article  CAS  Google Scholar 

  13. Mitchell, P. & Tollervey, D. Nat. Struct. Biol. 7, 843–846 (2000).

    Article  CAS  Google Scholar 

  14. van Hoof, A. & Parker, R. Cell 99, 347–350 (1999).

    Article  CAS  Google Scholar 

  15. Allmang, C. et al. Genes Dev. 13, 2148–2158 (1999).

    Article  CAS  Google Scholar 

  16. Cairrao, F., Arraiano, C. & Newbury, S. Dev. Dyn. 232, 733–737 (2005).

    Article  CAS  Google Scholar 

  17. Midtgaard, S.F. et al. Proc. Natl. Acad. Sci. USA 103, 11898–11903 (2006).

    Article  CAS  Google Scholar 

  18. Lorentzen, E. et al. Nat. Struct. Mol. Biol. 12, 575–581 (2005).

    Article  CAS  Google Scholar 

  19. LaCava, J. et al. Cell 121, 713–724 (2005).

    Article  CAS  Google Scholar 

  20. Zuo, Y., Wang, Y. & Malhotra, A. Structure 13, 973–984 (2005).

    Article  CAS  Google Scholar 

  21. Buttner, K., Wenig, K. & Hopfner, K.P. Mol. Cell 20, 461–471 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossman, D., van Hoof, A. RNase II structure completes group portrait of 3′ exoribonucleases. Nat Struct Mol Biol 13, 760–761 (2006). https://doi.org/10.1038/nsmb0906-760

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb0906-760

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing