Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

tRNA genes as chromatin barriers

Chromatin barriers restrict silenced chromatin domains from invading active domains. A recent study shows that a tRNA gene functions as a barrier in Schizosaccharomyces pombe. These results, similar to previous observations in Saccharomyces cerevisiae, point toward a novel function for tRNA genes and a common mechanism of compartmentalizing and organizing eukaryotic chromatin.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of S. pombe centromere.

References

  1. Chambeyron, S. & Bickmore, W.A. Curr. Opin. Cell. Biol. 16, 256–262 (2004).

    Article  CAS  Google Scholar 

  2. Kamakaka, R.T. Trends Biochem. Sci. 22, 124–128 (1997).

    Article  CAS  Google Scholar 

  3. West, A.G., Gaszner, M. & Felsenfeld, G. Genes Dev. 16, 271–288 (2002).

    Article  Google Scholar 

  4. Scott, K.C., Merrett, S.L. & Willard, H.F. Curr. Biol. 16, 119–129 (2006).

    Article  CAS  Google Scholar 

  5. Wood, V. et al. Nature 415, 871–880 (2002).

    Article  CAS  Google Scholar 

  6. Pidoux, A.L. & Allshire, R.C. Chromosome Res. 12, 521–534 (2004).

    Article  CAS  Google Scholar 

  7. Takahashi, K., Murakami, S., Chikashige, Y., Niwa, O. & Yanagida, M. J. Mol. Biol. 218, 13–17 (1991).

    Article  CAS  Google Scholar 

  8. Kuhn, R.M., Clarke, L. & Carbon, J. Proc. Natl. Acad. Sci. USA 88, 1306–1310 (1991).

    Article  CAS  Google Scholar 

  9. Cam, H.P. et al. Nat. Genet. 37, 809–819 (2005).

    Article  CAS  Google Scholar 

  10. Donze, D., Adams, C.R., Rine, J. & Kamakaka, R.T. Genes Dev. 13, 698–708 (1999).

    Article  CAS  Google Scholar 

  11. Donze, D. & Kamakaka, R.T. EMBO J. 20, 520–531 (2001).

    Article  CAS  Google Scholar 

  12. Noma, K., Allis, C.D. & Grewal, S.I. Science 293, 1150–1155 (2001).

    Article  CAS  Google Scholar 

  13. West, A.G., Huang, S., Gaszner, M., Litt, M.D. & Felsenfeld, G. Mol. Cell 16, 453–463 (2004).

    Article  CAS  Google Scholar 

  14. Fourel, G., Revardel, E., Koering, C.E. & Gilson, E. EMBO J. 18, 2522–2537 (1999).

    Article  CAS  Google Scholar 

  15. Oki, M. & Kamakaka, R.T. Mol. Cell 19, 707–716 (2005).

    Article  CAS  Google Scholar 

  16. Willoughby, D.A., Vilalta, A. & Oshima, R.G. J. Biol. Chem. 275, 759–768 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haldar, D., Kamakaka, R. tRNA genes as chromatin barriers. Nat Struct Mol Biol 13, 192–193 (2006). https://doi.org/10.1038/nsmb0306-192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb0306-192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing