Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Chromatin, transcript elongation and alternative splicing

A recent study reveals that the chromatin-remodeling factor SWI/SNF regulates alternative splicing by creating internal 'roadblocks' to transcriptional elongation where the phosphorylation status of RNA pol II is qualitatively changed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The kinetic coupling model for the regulation of alternative splicing by Pol II elongation.
Figure 2: SWI/SNF stimulates inclusion of alternative exons in the CD44 gene by creating a 'roadblock' to Pol II elongation at the variable region.

References

  1. Roberts, G.C., Gooding, C., Mak, H.Y., Proudfoot, N.J. & Smith, C.W.J. Nucleic Acids Res. 26, 5568–5572 (1998).

    Article  CAS  Google Scholar 

  2. de la Mata, M. et al. Mol. Cell 12, 525–532 (2003).

    Article  CAS  Google Scholar 

  3. Howe, K.J., Kane, C.M. & Ares, M. Jr. RNA 9, 993–1006 (2003).

    Article  CAS  Google Scholar 

  4. Cramer, P., Pesce, C.G., Baralle, F.E. & Kornblihtt, A.R. Proc. Natl. Acad. Sci. USA 94, 11456–11460 (1997).

    Article  CAS  Google Scholar 

  5. Kornblihtt, A.R. Curr. Opin. Cell Biol. 17, 262–268 (2005).

    Article  CAS  Google Scholar 

  6. Kadener, S. et al. EMBO J. 20, 5759–5768 (2001).

    Article  CAS  Google Scholar 

  7. Nogués, G., Kadener, S., Cramer, P., Bentley, D. & Kornblihtt, A.R. J. Biol. Chem. 277, 43110–43114 (2002).

    Article  Google Scholar 

  8. Auboeuf, D. et al. Proc. Natl. Acad. Sci. USA 101, 2270–2274 (2004).

    Article  CAS  Google Scholar 

  9. Batsché, E., Yaniv, M. & Müchardt, C. Nat. Struct. Mol. Biol. 13, 22–29 (2006).

    Article  Google Scholar 

  10. Lorincz, M.C., Dickerson, D.R., Schmitt, M. & Groudine, M. Nat. Struct. Mol. Biol. 11, 1068–1075 (2004).

    Article  CAS  Google Scholar 

  11. Gornemann, J., Kotovic, K.M., Hujer, K. & Neugebauer, K.M. Mol. Cell 19, 53–63 (2005).

    Article  Google Scholar 

  12. Lacadie, S.A. & Rosbash, M. Mol. Cell 19, 65–75 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornblihtt, A. Chromatin, transcript elongation and alternative splicing. Nat Struct Mol Biol 13, 5–7 (2006). https://doi.org/10.1038/nsmb0106-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb0106-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing