Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Arrest of CFTRΔF508 folding

The deletion of residue 508 in CFTR is the most common cystic fibrosis–causing mutation. Recent studies indicate that the main chain and side chain of this residue contribute to the proper folding of CFTR at different stages.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure of CFTR.
Figure 2: Misfolding and selection of CFTRΔF508 for degradation.

References

  1. Dobson, C.M. Nature 426, 884–890 (2003).

    Article  CAS  Google Scholar 

  2. Cyr, D.M., Hohfeld, J. & Patterson, C. Trends Biochem. Sci. 27, 368–375 (2002).

    Article  CAS  Google Scholar 

  3. Welsh, M.J. & Ostedgaard, L.S. Nat. Struct. Biol. 5, 167–169 (1998).

    Article  CAS  Google Scholar 

  4. Meacham, G.C. et al. EMBO J. 18, 1492–1505 (1999).

    Article  CAS  Google Scholar 

  5. Gelman, M.S. & Kopito, R.R. J. Clin. Invest. 110, 1591–1597 (2002).

    Article  CAS  Google Scholar 

  6. Du, K., Sharma, M. & Lukacs, G.L. Nat. Struct. Mol. Biol. 12, 17–25 (2005).

    Article  CAS  Google Scholar 

  7. Thibodeau, P., Brautigam, C.A., Machius, M. & Thomas, P.J. 12, 10–16 (2005).

  8. Riordan, J.R. et al. Science 245, 1066–1073 (1989).

    Article  CAS  Google Scholar 

  9. Lewis, H.A. et al. EMBO J. 23, 282–293 (2004).

    Article  CAS  Google Scholar 

  10. Smith, P.C. et al. Mol. Cell 10, 139–249 (2002).

    Article  CAS  Google Scholar 

  11. Lewis, H.A. et al. J. Biol. Chem. published online, 3 November 2004 (doi:10.1074/jbc.M410968200).

  12. Teem, J.L. et al. Cell 73, 335–346 (1993).

    Article  CAS  Google Scholar 

  13. Chang, G. & Roth, C.B. Science 293, 1793–1800 (2001).

    Article  CAS  Google Scholar 

  14. Zhang, F., Kartner, N. & Lukacs, G.L. Nat. Struct. Biol. 5, 180–183 (1998).

    Article  CAS  Google Scholar 

  15. Tector, M. & Hartl, F.U. EMBO J. 18, 6290–6298 (1999).

    Article  CAS  Google Scholar 

  16. Chen, E.Y., Bartlett, M.C., Loo, T.W. & Clarke, D.M. J. Biol. Chem. 279, 39620–39627 (2004).

    Article  CAS  Google Scholar 

  17. Qu, B.H. & Thomas, P.J. J. Biol. Chem. 271, 7261–7264 (1996).

    Article  CAS  Google Scholar 

  18. Meacham, G.C., Patterson, C., Zhang, W., Younger, J.M. & Cyr, D.M. Nat. Cell Biol. 3, 100–105 (2001).

    Article  CAS  Google Scholar 

  19. Younger, J.M. et al. J. Cell Biol. 167, 1075–1085 (2004).

Download references

Acknowledgements

Research in the laboratory of D.M.C. is supported by the US National Institutes of Health and Cystic Fibrosis Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cyr, D. Arrest of CFTRΔF508 folding. Nat Struct Mol Biol 12, 2–3 (2005). https://doi.org/10.1038/nsmb0105-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb0105-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing