Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

EGF-receptor specificity for phosphotyrosine-primed substrates provides signal integration with Src

Abstract

Aberrant activation of the EGF receptor (EGFR) contributes to many human cancers by activating the Ras-MAPK pathway and other pathways. EGFR signaling is augmented by Src-family kinases, but the mechanism is poorly understood. Here, we show that human EGFR preferentially phosphorylates peptide substrates that are primed by a prior phosphorylation. Using peptides based on the sequence of the adaptor protein Shc1, we show that Src mediates the priming phosphorylation, thus promoting subsequent phosphorylation by EGFR. Importantly, the doubly phosphorylated Shc1 peptide binds more tightly than singly phosphorylated peptide to the Ras activator Grb2; this binding is a key step in activating the Ras-MAPK pathway. Finally, a crystal structure of EGFR in complex with a primed Shc1 peptide reveals the structural basis for EGFR substrate specificity. These results provide a molecular explanation for the integration of Src and EGFR signaling with downstream effectors such as Ras.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determination of the EGFR optimal substrate motif.
Figure 2: Shc1 is phosphorylated by EGFR at Tyr239.
Figure 3: Src primes Shc1 for EGFR phosphorylation by phosphorylating Tyr240.
Figure 4: Dual phosphorylation of Tyr239 and Tyr240 is controlled by EGFR and Src in cells and enhances Shc1 binding to Grb2.
Figure 5: Shc1 phosphopeptide binding to the EGFR kinase domain.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Yarden, Y. & Sliwkowski, M.X. Untangling the ErbB signaling network. Nat. Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  Google Scholar 

  2. Zhang, X., Gureasko, J., Shen, K., Cole, P.A. & Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125, 1137–1149 (2006).

    Article  CAS  Google Scholar 

  3. Ciardiello, F. & Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med. 358, 1160–1174 (2008).

    Article  CAS  Google Scholar 

  4. Wheeler, D.L., Dunn, E.F. & Harari, P.M. Understanding resistance to EGFR inhibitors: impact on future treatment strategies. Nat. Rev. Clin. Oncol. 7, 493–507 (2010).

    Article  CAS  Google Scholar 

  5. Bromann, P.A., Korkaya, H. & Courtneidge, S.A. The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23, 7957–7968 (2004).

    Article  CAS  Google Scholar 

  6. Tice, D.A., Biscardi, J.S., Nickles, A.L. & Parsons, S.J. Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc. Natl. Acad. Sci. USA 96, 1415–1420 (1999).

    Article  CAS  Google Scholar 

  7. Biscardi, J.S. et al. c-Src mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J. Biol. Chem. 274, 8335–8343 (1999).

    Article  CAS  Google Scholar 

  8. Moro, L. et al. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J. Biol. Chem. 277, 9405–9414 (2002).

    Article  CAS  Google Scholar 

  9. Boerner, J.L., Biscardi, J.S., Silva, C.M. & Parsons, S.J. Transactivating agonists of the EGF receptor require Tyr845 phosphorylation for induction of DNA synthesis. Mol. Carcinog. 44, 262–273 (2005).

    Article  CAS  Google Scholar 

  10. Biscardi, J.S., Belsches, A.P. & Parsons, S.J. Characterization of human epidermal growth factor receptor and c-Src in human breast tumor cells. Mol. Carcinog. 21, 261–272 (1998).

    Article  CAS  Google Scholar 

  11. Maa, M.C., Leu, T.H., McCarley, D.J., Schatzman, R.C. & Parsons, S.J. Potentiation of EGF receptor-mediated oncogenesis by c-SRC: implications for the etiology of multiple human cancers. Proc. Natl. Acad. Sci. USA 92, 6981–6985 (1995).

    Article  CAS  Google Scholar 

  12. Dimri, M. et al. Modeling breast cancer-associated c-SRC and EGFR overexpression in human MECs: c-Src and EGFR cooperatively promote aberrant three-dimensional acinar structure and invasive behavior. Cancer Res. 67, 4164–4172 (2007).

    Article  CAS  Google Scholar 

  13. Fu, Y.-N. et al. EGFR mutants found in non-small cell lung cancer show different levels of sensitivity to suppression of Src: implications in targeting therapy. Oncogene 27, 957–965 (2008).

    Article  CAS  Google Scholar 

  14. Chung, B.M. et al. The role of cooperativity with Src in oncogenic transformation mediated by non-small cell lung cancer-associated EGF receptor mutants. Oncogene 28, 1821–1832 (2009).

    Article  CAS  Google Scholar 

  15. Mueller, K.L., Hunter, L.A., Ethier, S.P. & Boerner, J.L. Met and c-Src cooperate to compensate for loss of epidermal growth factor receptor kinase activity in breast cancer cells. Cancer Res. 68, 3314–3322 (2008).

    Article  CAS  Google Scholar 

  16. Wheeler, D.L. et al. Epidermal growth factor receptor cooperates with Src family kinases in acquired resistance to cetuximab. Cancer Biol. Ther. 8, 696–703 (2009).

    Article  CAS  Google Scholar 

  17. Filosto, S., Baston, D.S., Chung, S., Becker, C.R. & Goldkorn, T. Src mediates cigarette smoke-induced resistance to tyrosine kinase inhibitors in NSCLC cells. Mol. Cancer Ther. 12, 1579–1590 (2013).

    Article  CAS  Google Scholar 

  18. Nolen, B., Taylor, S. & Ghosh, G. Regulation of protein kinases: controlling activity through activation segment conformation. Mol. Cell 15, 661–675 (2004).

    Article  CAS  Google Scholar 

  19. Gotoh, N., Tojo, A., Hino, M., Yazaki, Y. & Shibuya, M. A highly conserved tyrosine residue at codon 845 within the kinase domain is not required for the transforming activity of human epidermal growth factor receptor. Biochem. Biophys. Res. Commun. 186, 768–774 (1992).

    Article  CAS  Google Scholar 

  20. Mueller, K.L., Powell, K., Madden, J.M., Eblen, S.T. & Boerner, J.L. EGFR tyrosine 845 phosphorylation-dependent proliferation and transformation of breast cancer cells require activation of p38 MAPK. Transl. Oncol. 5, 327–334 (2012).

    Article  Google Scholar 

  21. Hutti, J.E. et al. A rapid method for determining protein kinase phosphorylation specificity. Nat. Methods 1, 27–29 (2004).

    Article  CAS  Google Scholar 

  22. Songyang, Z. et al. Catalytic specificity of protein tyrosine kinases is critical for selective signaling. Nature 373, 536–539 (1995).

    Article  CAS  Google Scholar 

  23. Chan, S.K., Gullick, W.J. & Hill, M.E. Mutations of the epidermal growth factor receptor in non-small cell lung cancer: search and destroy. Eur. J. Cancer 42, 17–23 (2006).

    Article  CAS  Google Scholar 

  24. Hornbeck, P.V. et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in human and mouse. Nucleic Acids Res. 40, D261–D270 (2012).

    Article  CAS  Google Scholar 

  25. Sato, K. et al. Tyrosine residues 239 and 240 of Shc are phosphatidylinositol 4,5-bisphosphate-dependent phosphorylation sites by c-Src. Biochem. Biophys. Res. Commun. 240, 399–404 (1997).

    Article  CAS  Google Scholar 

  26. Wills, M.K.B. & Jones, N. Teaching an old dogma new tricks: twenty years of Shc adaptor signaling. Biochem. J. 447, 1–16 (2012).

    Article  CAS  Google Scholar 

  27. van der Geer, P., Wiley, S., Gish, G.D. & Pawson, T. The Shc adaptor protein is highly phosphorylated at conserved, twin tyrosine residues (Y239/240) that mediate protein-protein interactions. Curr. Biol. 6, 1435–1444 (1996).

    Article  CAS  Google Scholar 

  28. Songyang, Z. et al. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol. Cell. Biol. 14, 2777–2785 (1994).

    Article  CAS  Google Scholar 

  29. Ngo, J.C.K. et al. A sliding docking interaction is essential for sequential and processive phosphorylation of an SR protein by SRPK1. Mol. Cell 29, 563–576 (2008).

    Article  CAS  Google Scholar 

  30. Luttrell, L.M. et al. Role of c-Src tyrosine kinase in G protein-coupled receptor and Gβγ subunit-mediated activation of mitogen-activated protein kinases. J. Biol. Chem. 271, 19443–19450 (1996).

    Article  CAS  Google Scholar 

  31. Nioche, P. et al. Crystal structures of the SH2 domain of Grb2: highlight on the binding of a new high-affinity inhibitor. J. Mol. Biol. 315, 1167–1177 (2002).

    Article  CAS  Google Scholar 

  32. Hubbard, S.R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581 (1997).

    Article  CAS  Google Scholar 

  33. Favelyukis, S., Till, J.H., Hubbard, S.R. & Miller, W.T. Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nat. Struct. Biol. 8, 1058–1063 (2001).

    Article  CAS  Google Scholar 

  34. Levinson, N.M. et al. A Src-like inactive conformation in the abl tyrosine kinase domain. PLoS Biol. 4, e144 (2006).

    Article  Google Scholar 

  35. Guo, A. et al. Signaling networks assembled by oncogenic EGFR and c-MET. Proc. Natl. Acad. Sci. USA 105, 692–697 (2008).

    Article  CAS  Google Scholar 

  36. Park, E. et al. Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nat. Struct. Mol. Biol. 22, 703–711 (2015).

    Article  CAS  Google Scholar 

  37. Ogura, K. et al. Solution structure of the SH2 domain of Grb2 complexed with the Shc-derived phosphotyrosine-containing peptide. J. Mol. Biol. 289, 439–445 (1999).

    Article  CAS  Google Scholar 

  38. Lubman, O.Y. & Waksman, G. Structural and thermodynamic basis for the interaction of the Src SH2 domain with the activated form of the PDGF beta-receptor. J. Mol. Biol. 328, 655–668 (2003).

    Article  CAS  Google Scholar 

  39. Chen, C.H., Martin, V.A., Gorenstein, N.M., Geahlen, R.L. & Post, C.B. Two closely spaced tyrosines regulate NFAT signaling in B cells via Syk association with Vav. Mol. Cell. Biol. 31, 2984–2996 (2011).

    Article  CAS  Google Scholar 

  40. Groesch, T.D., Zhou, F., Mattila, S., Geahlen, R.L. & Post, C.B. Structural basis for the requirement of two phosphotyrosine residues in signaling mediated by Syk tyrosine kinase. J. Mol. Biol. 356, 1222–1236 (2006).

    Article  CAS  Google Scholar 

  41. Weber, T., Schaffhausen, B., Liu, Y. & Gunther, U.L. NMR structure of the N-SH2 of the p85 subunit of phosphoinositide 3-kinase complexed to a doubly phosphorylated peptide reveals a second phosphotyrosine binding site. Biochemistry 39, 15860–15869 (2000).

    Article  CAS  Google Scholar 

  42. Fiol, C.J., Mahrenholz, A.M., Wang, Y., Roeske, R.W. & Roach, P.J. Formation of protein kinase recognition sites by covalent modification of the substrate: molecular mechanism for the synergistic action of casein kinase 2 and glycogen synthase kinase 3. J. Biol. Chem. 262, 14042–14048 (1987).

    CAS  PubMed  Google Scholar 

  43. Flotow, H. et al. Phosphate groups as substrate determinants for casein kinase 1 action. J. Biol. Chem. 265, 14264–14269 (1990).

    CAS  PubMed  Google Scholar 

  44. Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  Google Scholar 

  45. Schweiger, R. & Linial, M. Cooperativity within proximal phosphorylation sites is revealed from large-scale proteomics data. Biol. Direct 5, 6 (2010).

    Article  Google Scholar 

  46. Hutti, J.E. et al. IκB kinase β phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-κB pathway. Mol. Cell. Biol. 27, 7451–7461 (2007).

    Article  CAS  Google Scholar 

  47. Davis, T.L. et al. Structural recognition of an optimized substrate for the ephrin family of receptor tyrosine kinases. FEBS J. 276, 4395–4404 (2009).

    Article  CAS  Google Scholar 

  48. Bouskila, M. et al. TTBK2 kinase substrate specificity and the impact of spinocerebellar-ataxia-causing mutations on expression, activity, localization, and development. Biochem. J. 437, 157–167 (2011).

    Article  CAS  Google Scholar 

  49. Chen, S. et al. Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases. Sci. Signal. 6, ra40 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Yun, C.-H. et al. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11, 217–227 (2007).

    Article  CAS  Google Scholar 

  51. Xu, W., Harrison, S.C. & Eck, M.J. Three-dimensional structure of the tyrosine kinase c-SRC. Nature 385, 595–602 (1997).

    Article  CAS  Google Scholar 

  52. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  53. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  54. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  55. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Breitkopf and M. Yuan for help with MS experiments and Y. Zheng for help with HPLC experiments. We thank B. Murray for critical reading of the manuscript. This work was partially supported by US National Institutes of Health grants 2P01CA120964 (J.M.A.) and S10OD010612 (J.M.A.).

Author information

Authors and Affiliations

Authors

Contributions

M.J.B. designed and conducted all biochemical, enzymatic and cell-based experiments. C.Y. determined all crystal structures. C.A.G. and J.L.J., together with M.J.B., performed peptide library experiments. J.M.A. executed mass spectrometry–based experiments. M.J.E. conceived and supervised structural experiments. I.A. and A.J.C. conceived and supervised cell-based experiments. L.C.C., together with M.J.B., conceived the study and wrote the manuscript.

Corresponding author

Correspondence to Lewis C Cantley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 EGFR and Src peptide library assays using specific inhibitors.

(a) Phosphorylation of the pY+1 peptide library by EGFR WT or EGFR L858R in the presence of increasing concentrations of gefitinib. Activity is graphed as percent of control (no gefitinib). (b) Phosphorylation of the I-1, G+1, pY+1, and Y+3 peptide libraries by Src in the presence of increasing concentrations of dasatinib. Activity is graphed as percent of control (no dasatinib).

Supplementary Figure 2 EGFR activity toward peptides based on the sequence surrounding MET Tyr1234.

Peptides were phosphorylated in vitro with recombinant EGFR (MYDKEYYSVHNKK = Y-Y; MYDKEYpYSVHNKK = Y-pY). Error bars, s.d. (n=3 technical replicates).

Supplementary Figure 3 Specificity of phospho-Shc pY239/240–specific antibody.

Serial dilutions of peptides corresponding to the sequence surrounding Tyr239 of Shc1 were spotted on nitrocellulose and probed with a phospho-Shc pY239/240 antibody (Cell Signaling Technology Cat #2434; PDHQYYNDAKKK = Y-Y; PDHQYpYNDAKKK = Y-pY; PDHQpYYNDAKKK = pY-Y; PDHQpYpYNDAKKK = pY-pY). 40nmol corresponds to 2μL of a 20mM stock solution of each peptide (20mM is the solubility limit of the peptides in Tris buffer).

Supplementary Figure 4 Crystal structures of EGFR in complex with peptides.

(a) (b) Electron density of peptides in complex with EGFR L858R kinase domain. Fo-Fc difference omit maps (in which the peptides were omitted) for the optimal peptide (a) or the primed Shc1 peptide (b) contoured at 3σ. (c) Interactions between the EGFR L858R kinase domain and the optimal substrate peptide (DEEDYpYEIP). Hydrogen bonds are indicated with dashed lines.

Supplementary Figure 5 Peptide library results for ERBB2 and ERBB4.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1 and 2 (PDF 1675 kb)

Supplementary Data Set 1

Original western blot images (PDF 948 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begley, M., Yun, Ch., Gewinner, C. et al. EGF-receptor specificity for phosphotyrosine-primed substrates provides signal integration with Src. Nat Struct Mol Biol 22, 983–990 (2015). https://doi.org/10.1038/nsmb.3117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing