Abstract
We propose a DNA-hairpin model for the processivity of telomeric-repeat addition. Concomitantly with template-RNA translocation after each repeat synthesis, the complementary DNA repeat, for example, AGGGTT, loops out in a noncanonical base-paired hairpin, thus freeing the RNA template for the next round of repeat synthesis. The DNA hairpin is temporarily stabilized by telomerase and the incoming dGTP but becomes realigned for processive telomere synthesis.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Zipper head mechanism of telomere synthesis by human telomerase
Cell Research Open Access 15 November 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Blackburn, E.H. Nature 350, 569–573 (1991).
Berman, A.J. & Cech, T.R. Cell 151, 1138–1138.e1 (2012).
Greider, C.W. Curr. Biol. 8, R178–R181 (1998).
Autexier, C. & Greider, C.W. Genes Dev. 8, 563–575 (1994).
Nakamura, T.M. et al. Science 277, 955–959 (1997).
Gillis, A.J., Schuller, A.P. & Skordalakes, E. Nature 455, 633–637 (2008).
Mitchell, M., Gillis, A., Futahashi, M., Fujiwara, H. & Skordalakes, E. Nat. Struct. Mol. Biol. 17, 513–518 (2010).
Harkisheimer, M., Mason, M., Shuvaeva, E. & Skordalakes, E. Structure 21, 1870–1878 (2013).
Huang, J. et al. Nat. Struct. Mol. Biol. 21, 507–512 (2014).
Wu, R.A. & Collins, K. Proc. Natl. Acad. Sci. USA 111, 11234–11235 (2014).
Robart, A.R. & Collins, K. Mol. Cell 42, 308–318 (2011).
Greider, C.W. & Blackburn, E.H. Nature 337, 331–337 (1989).
Berman, A.J., Akiyama, B.M., Stone, M.D. & Cech, T.R. Nat. Struct. Mol. Biol. 18, 1371–1375 (2011).
Wu, R.A. & Collins, K. EMBO J. 33, 921–935 (2014).
Parks, J.W. & Stone, M.D. Nat. Commun. 5, 4146 (2014).
Brown, A.F. et al. Proc. Natl. Acad. Sci. USA 111, 11311–11316 (2014).
Podlevsky, J.D., Bley, C.J., Omana, R.V., Qi, X. & Chen, J.J. Nucleic Acids Res. 36, D339–D343 (2008).
Chen, J.L., Blasco, M.A. & Greider, C.W. Cell 100, 503–514 (2000).
Adams, S.P. et al. Proc. Biol. Sci. 268, 1541–1546 (2001).
Williamson, J.R., Raghuraman, M.K. & Cech, T.R. Cell 59, 871–880 (1989).
Schaffitzel, C. et al. Proc. Natl. Acad. Sci. USA 98, 8572–8577 (2001).
Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Nat. Chem. 5, 182–186 (2013).
Sfeir, A. et al. Cell 138, 90–103 (2009).
Lormand, J.D. et al. Nucleic Acids Res. 41, 10323–10333 (2013).
Jarstfer, M.B. & Cech, T.R. Biochemistry 41, 151–161 (2002).
Barabas, O. et al. Cell 132, 208–220 (2008).
Padrta, P., Stefl, R., Kralik, L., Zidek, L. & Sklenar, V. J. Biomol. NMR 24, 1–14 (2002).
Yang, W. & Woodgate, R. Proc. Natl. Acad. Sci. USA 104, 15591–15598 (2007).
Huang, H., Chopra, R., Verdine, G.L. & Harrison, S.C. Science 282, 1669–1675 (1998).
Lee, Y.S., Gao, Y. & Yang, W. Nat. Struct. Mol. Biol. 22, 298–303 (2015).
Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A. & Steitz, T.A. Science 256, 1783–1790 (1992).
Sauerwald, A. et al. Nat. Struct. Mol. Biol. 20, 454–460 (2013).
Hardy, C.D., Schultz, C.S. & Collins, K. J. Biol. Chem. 276, 4863–4871 (2001).
Drosopoulos, W.C. & Prasad, V.R. Nucleic Acids Res. 35, 1155–1168 (2007).
Drosopoulos, W.C. & Prasad, V.R. Mol. Cell. Biol. 30, 447–459 (2010).
Acknowledgements
We thank K. Collins for guiding us throughout the project, J.-L. Chen and T.R. Cech for insightful discussion, J.P. Cooper, T. de Lange, C.W. Greider, D. Rhodes and M.D. Stone for encouragement and D.J. Leahy and M. Gellert for critical reading of the manuscript. This work was funded by the US National Institutes of Health Intramural Program (DK036146-08 to W.Y.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Structural differences between p66 and p51 subunits of HIV-1 RT and unfolding of the β-linker.
After superposition of the palm domains in p51 and p66 (PDB 1RTD)29, the movement of the thumb (green) in the two subunits is morphed. The β-linker (pink) between the thumb and palm domain (made of three β-strands) is unfolded in the p51 subunit. (MOV 757 kb)
Animation of the DNA hairpin model.
At the end of each cycle of repeat addition, while the RNA template (dark red) and DNA primer (orange) hybrid is translocated together, the 3′ end of DNA remains in the active site of TERT (shown as an outlined pink oval), and one telomeric repeat, e.g. AGGGTT, is looped out. The underscored T, which is recognized by TRBD as a signal for pausing DNA hairpin formation, is highlighted in olive color. Binding of the incoming dGTP stabilizes the hairpin loopout and also promotes the DNA realignment for the next round of repeat synthesis. (MOV 1349 kb)
Rights and permissions
About this article
Cite this article
Yang, W., Lee, YS. A DNA-hairpin model for repeat-addition processivity in telomere synthesis. Nat Struct Mol Biol 22, 844–847 (2015). https://doi.org/10.1038/nsmb.3098
Published:
Issue Date:
DOI: https://doi.org/10.1038/nsmb.3098
This article is cited by
-
Structures of telomerase at several steps of telomere repeat synthesis
Nature (2021)
-
Zipper head mechanism of telomere synthesis by human telomerase
Cell Research (2021)
-
Structural biology of telomeres and telomerase
Cellular and Molecular Life Sciences (2020)
-
How DNA polymerases catalyse replication and repair with contrasting fidelity
Nature Reviews Chemistry (2017)