Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Light-driven Na+ pumps as next-generation inhibitory optogenetic tools

The first structures of a light-driven sodium pump provide insight into the mechanism of ion transport and selectivity. Genetic manipulation of rat neuronal cells and of Caenorhabditis elegans worms demonstrates the utility of such pumps for optogenetic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retinal-binding proteins used as optogenetic tools.
Figure 2: Kr2 cavities as part of the ion-translocation pathway.

References

  1. Deisseroth, K. Sci. Am. 303, 48–55 (2010).

    Article  Google Scholar 

  2. Nagel, G. et al. Science 296, 2395–2398 (2002).

    Article  CAS  Google Scholar 

  3. Nagel, G. et al. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  4. Schobert, B. & Lanyi, J.K. J. Biol. Chem. 257, 10306–10313 (1982).

    CAS  PubMed  Google Scholar 

  5. Inoue, K. et al. Nat. Commun. 4, 1678 (2013).

    Article  Google Scholar 

  6. Gushchin, I. et al. Nat. Struct. Mol. Biol. 22, 390–395 (2015).

    Article  CAS  Google Scholar 

  7. Kato, H.E. et al. Nature doi:10.1038/nature14322 (6 April 2015).

  8. Nat. Methods 8, 1 (2011).

  9. News Staff. Science 330, 1612–1613 (2010).

  10. Kravitz, A.V. et al. Nature 466, 622–626 (2010).

    Article  CAS  Google Scholar 

  11. Häusser, M. Nat. Methods 11, 1012–1014 (2014).

    Article  Google Scholar 

  12. Kato, H.E. et al. Nature 482, 369–374 (2012).

    Article  CAS  Google Scholar 

  13. Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D. & Tsien, R.Y. Nat. Neurosci. 16, 1499–1508 (2013).

    Article  CAS  Google Scholar 

  14. Berndt, A., Lee, S.Y., Ramakrishnan, C. & Deisseroth, K. Science 344, 420–424 (2014).

    Article  CAS  Google Scholar 

  15. Wietek, J. et al. Science 344, 409–412 (2014).

    Article  CAS  Google Scholar 

  16. Wickstrand, C., Dods, R., Royant, A. & Neutze, R. Biochim. Biophys. Acta 1850, 536–553 (2015).

    Article  CAS  Google Scholar 

  17. Lodish, H.F. Molecular Cell Biology (W.H. Freeman, 2000).

    Google Scholar 

  18. Kolbe, M., Besir, H., Essen, L.O. & Oesterhelt, D. Science 288, 1390–1396 (2000).

    Article  CAS  Google Scholar 

  19. Ho, B.K. & Gruswitz, F. BMC Struct. Biol. 8, 49 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Standfuss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogly, P., Standfuss, J. Light-driven Na+ pumps as next-generation inhibitory optogenetic tools. Nat Struct Mol Biol 22, 351–353 (2015). https://doi.org/10.1038/nsmb.3017

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3017

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing