Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-RNA loading licenses Argonaute for assembly into a transcriptional silencing complex

Subjects

Abstract

Argonautes and their small-RNA cofactors form the core effectors of ancient and diverse gene-silencing mechanisms whose roles include regulation of gene expression and defense against foreign genetic elements. Although Argonautes generally act within multisubunit complexes, what governs their assembly into these machineries is not well defined. Here, we show that loading of small RNAs onto Argonaute is a checkpoint for Argonaute's association with conserved GW-protein components of silencing complexes. We demonstrate that the Argonaute small interfering RNA chaperone (ARC) complex mediates loading of small RNAs onto Ago1 in Schizosaccharomyces pombe and that deletion of its subunits, or mutations in Ago1 that prevent small-RNA loading, abolish the assembly of the GW protein–containing RNA-induced transcriptional silencing (RITS) complex. Our studies uncover a mechanism that ensures that Argonaute loading precedes RITS assembly and thereby averts the formation of inert and potentially deleterious complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ARC subunits Arb1 and Arb2 are required for RITS assembly.
Figure 2: Loading of small RNAs onto Ago1 is required for assembly of RITS but not ARC.
Figure 3: ARC binds small RNAs in vivo that bear features of Dcr1-generated duplexes.
Figure 4: Immunopurified Ago1 binds duplex small RNAs in vitro in an Arb1-dependent manner.
Figure 5: Arb1 is required for all Ago1 small RNA–loading activity in vivo.
Figure 6: ago1+ overexpression partially suppresses silencing defect of arb1Δ and arb2Δ by overcoming the requirement for ARC in small-RNA loading.
Figure 7: Regulation of RITS-complex assembly by small-RNA loading onto Argonaute.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Ghildiyal, M. & Zamore, P.D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Malone, C.D. & Hannon, G.J. Small RNAs as guardians of the genome. Cell 136, 656–668 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Moazed, D. Small RNAs in transcriptional gene silencing and genome defence. Nature 457, 413–420 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Olovnikov, I., Chan, K., Sachidanandam, R., Newman, D.K. & Aravin, A.A. Bacterial Argonaute samples the transcriptome to identify foreign DNA. Mol. Cell 51, 594–605 (2013).

    CAS  PubMed  Google Scholar 

  5. Hutvagner, G. & Simard, M.J. Argonaute proteins: key players in RNA silencing. Nat. Rev. Mol. Cell Biol. 9, 22–32 (2008).

    CAS  PubMed  Google Scholar 

  6. Jinek, M. & Doudna, J.A. A three-dimensional view of the molecular machinery of RNA interference. Nature 457, 405–412 (2009).

    CAS  PubMed  Google Scholar 

  7. Meister, G. Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet. 14, 447–459 (2013).

    CAS  PubMed  Google Scholar 

  8. Hammond, S.M., Bernstein, E., Beach, D. & Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    CAS  PubMed  Google Scholar 

  9. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Colmenares, S.U., Buker, S.M., Buhler, M., Dlakić, M. & Moazed, D. Coupling of double-stranded RNA synthesis and siRNA generation in fission yeast RNAi. Mol. Cell 27, 449–461 (2007).

    CAS  PubMed  Google Scholar 

  11. Reinhart, B.J. & Bartel, D.P. Small RNAs correspond to centromere heterochromatic repeats. Science 297, 1831 (2002).

    CAS  PubMed  Google Scholar 

  12. Yu, R., Jih, G., Iglesias, N. & Moazed, D. Determinants of heterochromatic siRNA biogenesis and function. Mol. Cell 53, 262–276 (2014).

    CAS  PubMed  Google Scholar 

  13. Buker, S.M. et al. Two different Argonaute complexes are required for siRNA generation and heterochromatin assembly in fission yeast. Nat. Struct. Mol. Biol. 14, 200–207 (2007).

    CAS  PubMed  Google Scholar 

  14. Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. & Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    CAS  PubMed  Google Scholar 

  15. Rand, T.A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629 (2005).

    CAS  PubMed  Google Scholar 

  16. Bayne, E.H. et al. Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 140, 666–677 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gerace, E.L., Halic, M. & Moazed, D. The methyltransferase activity of Clr4Suv39h triggers RNAi independently of histone H3K9 methylation. Mol. Cell 39, 360–372 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hong, E.-J.E., Villén, J., Gerace, E.L., Gygi, S.P. & Moazed, D.A. Cullin E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3-K9 methyltransferase and is required for RNAi-mediated heterochromatin formation. RNA Biol. 2, 106–111 (2005).

    CAS  PubMed  Google Scholar 

  19. Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    CAS  PubMed  Google Scholar 

  20. Zhang, K., Mosch, K., Fischle, W. & Grewal, S.I.S. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 15, 381–388 (2008).

    CAS  PubMed  Google Scholar 

  21. Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science 294, 2539–2542 (2001).

    CAS  PubMed  Google Scholar 

  22. Ellermeier, C. et al. RNAi and heterochromatin repress centromeric meiotic recombination. Proc. Natl. Acad. Sci. USA 107, 8701–8705 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Probst, A.V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10, 192–206 (2009).

    CAS  PubMed  Google Scholar 

  24. Azevedo, J., Cooke, R. & Lagrange, T. Taking RISCs with Ago hookers. Curr. Opin. Plant Biol. 14, 594–600 (2011).

    CAS  PubMed  Google Scholar 

  25. Braun, J.E., Huntzinger, E. & Izaurralde, E. The role of GW182 proteins in miRNA-mediated silencing. Adv. Exp. Med. Biol. 768, 147–163 (2013).

    CAS  PubMed  Google Scholar 

  26. El-Shami, M. et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev. 21, 2539–2544 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Till, S. et al. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat. Struct. Mol. Biol. 14, 897–903 (2007).

    CAS  PubMed  Google Scholar 

  28. Braun, J.E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120–133 (2011).

    CAS  PubMed  Google Scholar 

  29. Chekulaeva, M. et al. miRNA repression involves GW182-mediated recruitment of CCR4–NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 18, 1218–1226 (2011).

    CAS  PubMed  Google Scholar 

  30. Fabian, M.R. et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4–NOT. Nat. Struct. Mol. Biol. 18, 1211–1217 (2011).

    CAS  PubMed  Google Scholar 

  31. Partridge, J.F. et al. Functional separation of the requirements for establishment and maintenance of centromeric heterochromatin. Mol. Cell 26, 593–602 (2007).

    CAS  PubMed  Google Scholar 

  32. Pontier, D. et al. NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis. Mol. Cell 48, 121–132 (2012).

    CAS  PubMed  Google Scholar 

  33. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Baillat, D. & Shiekhattar, R. Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol. Cell. Biol. 29, 4144–4155 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Giner, A., Lakatos, L., García-Chapa, M., López-Moya, J.J. & Burgyán, J. Viral protein inhibits RISC activity by argonaute binding through conserved WG/GW motifs. PLoS Pathog. 6, e1000996 (2010).

    PubMed  PubMed Central  Google Scholar 

  36. Eulalio, A., Helms, S., Fritzsch, C., Fauser, M. & Izaurralde, E. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 15, 1067–1077 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, J., Valencia-Sanchez, M.A., Hannon, G.J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7, 719–723 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Woolcock, K.J. et al. RNAi keeps Atf1-bound stress response genes in check at nuclear pores. Genes Dev. 26, 683–692 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Halic, M. & Moazed, D. Dicer-independent primal RNAs trigger RNAi and heterochromatin formation. Cell 140, 504–516 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Marasovic, M., Zocco, M. & Halic, M. Argonaute and Triman generate Dicer-independent priRNAs and mature siRNAs to initiate heterochromatin formation. Mol. Cell 52, 173–183 (2013).

    CAS  PubMed  Google Scholar 

  41. Ma, J.-B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666–670 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma, J.-B., Ye, K. & Patel, D.J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schirle, N.T. & MacRae, I.J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Iida, T., Nakayama, J. & Moazed, D. siRNA-mediated heterochromatin establishment requires HP1 and is associated with antisense transcription. Mol. Cell 31, 178–189 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Irvine, D.V. et al. Argonaute slicing is required for heterochromatic silencing and spreading. Science 313, 1134–1137 (2006).

    CAS  PubMed  Google Scholar 

  46. Martinez, N.J. & Gregory, R.I. Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA 19, 605–612 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Smibert, P., Yang, J.-S., Azzam, G., Liu, J.-L. & Lai, E.C. Homeostatic control of Argonaute stability by microRNA availability. Nat. Struct. Mol. Biol. 20, 789–795 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818–822 (2010).

    CAS  PubMed  Google Scholar 

  49. Bühler, M., Spies, N., Bartel, D.P. & Moazed, D. TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. Nat. Struct. Mol. Biol. 15, 1015–1023 (2008).

    PubMed  PubMed Central  Google Scholar 

  50. Gregory, R.I., Chendrimada, T.P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640 (2005).

    CAS  PubMed  Google Scholar 

  51. Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003).

    CAS  PubMed  Google Scholar 

  52. Maniataki, E. & Mourelatos, Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19, 2979–2990 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Boland, A., Huntzinger, E., Schmidt, S., Izaurralde, E. & Weichenrieder, O. Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Proc. Natl. Acad. Sci. USA 108, 10466–10471 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Eulalio, A., Huntzinger, E. & Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat. Struct. Mol. Biol. 15, 346–353 (2008).

    CAS  PubMed  Google Scholar 

  55. Bähler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    PubMed  Google Scholar 

  56. Leeds, P., Peltz, S.W., Jacobson, A. & Culbertson, M.R. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 5, 2303–2314 (1991).

    CAS  PubMed  Google Scholar 

  57. Bühler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125, 873–886 (2006).

    PubMed  Google Scholar 

  58. Huang, J. & Moazed, D. Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev. 17, 2162–2176 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Moazed laboratory for helpful discussions; E. Gerace, M. Halic, N. Iglesias and J. Xiol for advice on protocols; M. Halic and R. Yu for scripts and advice on bioinformatic analysis; C. Centrella for technical assistance; and E. Egan, N. Iglesias, R. Jain, J. Xiol and R. Yu for critical reading of the manuscript. This work was supported by the US National Science Foundation Graduate Research Fellowship Program (D.H.) and the US National Institutes of Health grant R01 GM072805 (D.M.). D.M. is supported as a Howard Hughes Medical Institute Investigator. D.H. dedicates this paper to the memory of his beloved father, George Holoch, who died on 9 April 2013.

Author information

Authors and Affiliations

Authors

Contributions

D.H. and D.M. designed the study. D.H. performed all experiments and bioinformatic analysis. D.H. and D.M. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Danesh Moazed.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Ago1 associates with Arb1 and Arb2 independently of Tas3.

Mixture mass spectrometry analysis of the indicated FLAG purifications. Uniquely detected peptides, including overlapping peptides, are reported for each protein in each purification. Percent coverages shown are calculated by dividing the total number of amino acid residues represented in any peptide for a given protein in a given purification by the protein’s total length.

Supplementary Figure 2 Ago1 D580A, Ago1 F276A R773E, Ago1 F276A and Ago1 R773E are null-mutant proteins whose small RNA–binding activity correlates with their assembly into RITS.

(a) Schematic illustrating the ectopic insertion of 3xFLAG-tagged alleles of ago1 with endogenous promoter and terminator sequences near the trp1+ locus on chromosome 2. The native ago1+ locus harbors either a wild-type untagged allele or a deletion. (b) Tenfold serial dilutions of otr1R::ura4+ pericentromeric silencing reporter cells of the indicated genotypes, plated on non-selective medium or medium containing 5-FOA. (c) Northern blot analysis of dg siRNAs in total small RNA fractions and RNA immunoprecipitated with wild-type and mutant 3xFLAG-Ago1 proteins, in cells also expressing untagged wild-type Ago1, and Western blot analysis of input extracts and FLAG-immunoprecipitated material. (d) Western blot analysis of co-immunoprecipitation experiment to assay association of Tas3 with the indicated Ago1 proteins. (e) Western blot analysis of co-immunoprecipitation experiment to assay association of Arb1 with the indicated Ago1 proteins.

Supplementary Figure 3 RITS and ARC bind populations of pericentromeric small RNAs with similar sequences.

Tracks showing the normalized numbers of reads mapping to the dg and dh repeats flanking the centromere of chromosome 1, for small RNAs co-purifying with Tas3-TAP (RITS) or TAP-Arb1 (ARC), excluding tRNAs.

Supplementary Figure 4 Arb2 is not required for in vitro loading of duplex small RNAs onto immunopurified Ago1.

(a) Western blot analysis of input fractions and IgG magnetic beads after one-step purification of RITS and ARC from dcr1Δ cells expressing TAP-tagged subunits Tas3 or Arb1 or no tagged protein. (b) Phosphorimager scan of a non-denaturing polyacrylamide gel showing the 5’-end-labeled single-stranded and annealed duplex small RNAs used in in vitro binding assays. (c) Western blot analysis of the beads from FLAG purifications from the indicated cells, in aliquots equal to one-eighth of those used in the binding assay. (d) Phosphorimager scan of eluted RNAs after in vitro binding to immobilized 3xFLAG-Ago1 purified from the indicated wild-type and mutant cells. (e) Quantification by densitometry of the results shown in (d).

Supplementary Figure 5 Overexpressed Ago1 suppresses arb1Δ and arb2Δ not simply by rescuing protein stability and does not suppress other pericentromeric silencing mutants.

(a) Western blot analysis of total protein prepared from arb1Δ and arb2Δ cells expressing 3xFLAG-ago1 either from the endogenous locus or from an overexpression plasmid. Relative quantity of total protein loaded is indicated for each lane. Red pixels indicate saturated signal. (b) Western blot analysis of total protein prepared from cells of the indicated genotypes. Relative quantity of total protein loaded is indicated for each lane. (c) Tenfold serial dilutions of otr1R::ura4+ pericentromeric silencing reporter cells of the indicated genotypes, transformed with an empty vector (denoted with a “–”) or a 3xFLAG-ago1 overexpression plasmid (denoted with a red “+”), plated on non-selective medium or medium containing 5-FOA. Similarly, tenfold serial dilutions of otr1R::ade6+ cells of the indicated genotypes plated on medium containing a limiting concentration of adenine.

Supplementary Figure 6 Ago1 L317A protein does not complement ago1Δ but does not show a significant reduction in loading of pericentromeric siRNAs.

(a) Tenfold serial dilutions of otr1R::ura4+ or imr1R::ura4+ pericentromeric silencing reporter cells of the indicated genotypes plated on non-selective medium or medium containing 5-FOA. (b) Western blot analysis of whole cell extracts and FLAG immunoprecipitates prepared from wild-type cells transformed with the indicated 3xFLAG-ago1 overexpression plasmids, and Northern blot analysis of RNA extracted from each immunoprecipitated sample.

Supplementary Figure 7 ago1 D580A and ago1 F276A R773E are dominant-negative alleles when overexpressed.

Tenfold serial dilutions of otr1R::ura4+ pericentromeric silencing reporter cells of the indicated genotypes, transformed with an empty vector or a 3xFLAG-ago1 overexpression plasmid (wild-type or mutant as noted), plated on non-selective medium or medium containing 5-FOA.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–4 and Supplementary Note (PDF 738 kb)

Supplementary Data Set 1

Uncropped gel images (PDF 14944 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holoch, D., Moazed, D. Small-RNA loading licenses Argonaute for assembly into a transcriptional silencing complex. Nat Struct Mol Biol 22, 328–335 (2015). https://doi.org/10.1038/nsmb.2979

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2979

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing