Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of microRNA-mediated gene silencing by microRNA precursors

Abstract

Processing of microRNAs (miRNAs) from their precursors to their biologically active mature forms is regulated during development and cancer. We show that mouse pri- or pre-miR-151 can bind to and compete with mature miR-151-5p and miR-151-3p for binding sites contained within the complementary regions of the E2f6 mRNA 3′ untranslated region (UTR). E2f6 mRNA levels were directly regulated by pri- or pre-miR-151. Conversely, miR-151–mediated repression of ARHGDIA mRNA was dependent on the level of mature miR-151 because only the mature miRNA binds the 3′ UTR. Thus, processing of miR-151 can have different effects on separate mRNA targets within a cell. A bioinformatics pipeline revealed additional candidate regions where precursor miRNAs can compete with their mature miRNA counterparts. We validated this experimentally for miR-124 and the SNAI2 3′ UTR. Hence, miRNA precursors can serve as post-transcriptional regulators of miRNA activity and are not mere biogenesis intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miR-151-5p cleaves mouse E2f6 in the absence of a seed match.
Figure 2: miR-151-3p suppresses E2f6 expression by binding to the E2f6 3′ UTR adjacent to where miR-151-5p binds.
Figure 3: Precursor miR-151 competes with the mature miR-151-5p for binding to the E2f6 3′ UTR.
Figure 4: Pre-miR-151 binds to E2f6 in vivo and may protect the E2f6 transcript in quiescent tissues.
Figure 5: Regulation of miRNA activity by precursor miRNA is target specific.
Figure 6: Predicted widespread regulation of miRNA-mediated gene silencing by precursor miRNAs.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Bushati, N. & Cohen, S.M. microRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Cullen, B.R. Transcription and processing of human microRNA precursors. Mol. Cell 16, 861–865 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Trujillo, R.D., Yue, S.B., Tang, Y., O'Gorman, W.E. & Chen, C.Z. The potential functions of primary microRNAs in target recognition and repression. EMBO J. 29, 3272–3285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Okamura, K., Ladewig, E., Zhou, L. & Lai, E.C. Functional small RNAs are generated from select miRNA hairpin loops in flies and mammals. Genes Dev. 27, 778–792 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Obernosterer, G., Leuschner, P.J., Alenius, M. & Martinez, J. Post-transcriptional regulation of microRNA expression. RNA 12, 1161–1167 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roush, S. & Slack, F.J. The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Thomson, J.M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Calin, G.A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 99, 15524–15529 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, E.J. et al. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 14, 35–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Vito, C. et al. A TARBP2-dependent miRNA expression profile underlies cancer stem cell properties and provides candidate therapeutic reagents in Ewing sarcoma. Cancer Cell 21, 807–821 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Davis, B.N. & Hata, A. Regulation of microRNA biogenesis: a miRiad of mechanisms. Cell Commun. Signal. 7, 18 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Treiber, T., Treiber, N. & Meister, G. Regulation of microRNA biogenesis and function. Thromb. Haemost. 107, 605–610 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Slezak-Prochazka, I., Durmus, S., Kroesen, B.J. & van den Berg, A. MicroRNAs, macrocontrol: regulation of miRNA processing. RNA 16, 1087–1095 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Newman, M.A. & Hammond, S.M. Emerging paradigms of regulated microRNA processing. Genes Dev. 24, 1086–1092 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bass, B.L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Heale, B.S., Keegan, L.P. & O'Connell, M.A. The effect of RNA editing and ADARs on miRNA biogenesis and function. Adv. Exp. Med. Biol. 700, 76–84 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Yang, W. et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol. 13, 13–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Iizasa, H. et al. Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J. Biol. Chem. 285, 33358–33370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kawahara, Y., Zinshteyn, B., Chendrimada, T.P., Shiekhattar, R. & Nishikura, K. RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer–TRBP complex. EMBO Rep. 8, 763–769 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tay, Y. et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147, 344–357 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Franco-Zorrilla, J.M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39, 1033–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Hansen, T.B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Smalheiser, N.R. & Torvik, V.I. Mammalian microRNAs derived from genomic repeats. Trends Genet. 21, 322–326 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Shin, C. et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol. Cell 38, 789–802 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cartwright, P., Muller, H., Wagener, C., Holm, K. & Helin, K. E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent transcription. Oncogene 17, 611–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Gu, S., Jin, L., Zhang, F., Sarnow, P. & Kay, M.A. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat. Struct. Mol. Biol. 16, 144–150 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Diederichs, S. & Haber, D.A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Ding, J. et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat. Cell Biol. 12, 390–399 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chu, C., Qu, K., Zhong, F.L., Artandi, S.E. & Chang, H.Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44, 667–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giangrande, P.H. et al. A role for E2F6 in distinguishing G1/S- and G2/M-specific transcription. Genes Dev. 18, 2941–2951 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hsu, S.D. et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 39, D163–D169 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Alves, C.C., Carneiro, F., Hoefler, H. & Becker, K.F. Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Front. Biosci (Landmark Ed) 14, 3035–3050 (2009).

    Article  Google Scholar 

  41. Peng, X. & Guan, J.L. Focal adhesion kinase: from in vitro studies to functional analyses in vivo. Curr. Protein Pept. Sci. 12, 52–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. McLean, G.W. et al. The role of focal-adhesion kinase in cancer: a new therapeutic opportunity. Nat. Rev. Cancer 5, 505–515 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Kumar, M.S., Lu, J., Mercer, K.L., Golub, T.R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39, 673–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, J.F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Schmittgen, T.D., Jiang, J., Liu, Q. & Yang, L. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res. 32, e43 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kurreck, J., Wyszko, E., Gillen, C. & Erdmann, V.A. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 30, 1911–1918 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Christoffersen, N.R. et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ. 17, 236–245 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Kay laboratory, in particular, L. Lisowski for help with fluorescence-activated cell sorting, F. Zhang for mouse dissection and culture of Dicer-knockout cells, L. Sobkowiak for RNA extraction from mouse tissues and S. Gu and H.K. Kim for critical comments and helpful discussion. We also thank J. Sage and T. Rando (both at Stanford University) for providing reagents and A. Lund (University of Copenhagen) for advice on the biotinylated pre-miR-151 pulldown assay. We obtained the catalytically inactive form of Ago2 (Ago2-D597A) as a kind gift from G. Hannon (Cold Spring Harbor Laboratory). This work was supported by the US National Institutes of Health (grant DK078424 to M.A.K.). P.N.V. is supported by a Banting Postdoctoral Fellowship from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Contributions

B.R.-C., P.N.V. and M.A.K. designed the experiments. B.R.-C. performed the experiments with the exception of the ChIRP experiments, which were performed by Q.W. and Q.-J.L. Y.Z. performed bioinformatic predictions; B.R.-C., P.N.V. and M.A.K. analyzed and discussed the results and wrote the paper.

Corresponding author

Correspondence to Mark A Kay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Overexpression and processing of miRNAs from plasmids.

Sequences of the mature mouse miRNAs are indicated in bold. (a) Northern blot analysis of miR-151-5p and miR-151-3p overexpressed specifically from their respective U6 promoter driven small hairpin (sh) constructs. (b) Northern blot analysis of miR-124 overexpressed from a sh construct. (c) Northern blot analysis of miR-124 overexpressed from a Pol II based CMV driven construct, pEZX-124.

Supplementary Figure 2 Pre-miR-151 antagonizes mature miR-151 binding to E2f6 3′UTR.

(a) Multiple alignments of the binding site of the pre-miR-151 within the E2F6 3′UTR region (top panel) and pre-miR-151 (bottom panel) across various species. The pre-miR-151 is color coded to show the 5p arm (brown) and the 3p arm (green). (b) Schematic of the base pairing of the A-to-I edited pre-miR-151 with the mouse E2f6 3′UTR. Positions of the two inosines are shown in purple. The additional A:I base pairing created by editing is indicated by a dot. (c) Northern blot analysis of miR-151 from the Pol II based pEZX-151 construct. The blot was probed with a LNA probe against miR-151-5p. (d) Dual-luciferase reporter assay with E2f6 3′UTR (WT), 3p del or 3p-5p swap constructs and Sh-151-5p or Sh-151-3p. (e) Dose-dependent dual-luciferase reporter assay with E2f6 3′UTR WT and modified targets in presence of increasing dose of only mature miR-151-5p (Sh-151-5p) or both pre-miR-151 and mature miR-151-5p (pEZX-151 or pEZX-DM). (f) Dual luciferase reporter assay with E2f6 3′UTR in presence of Sh or pEZX-constructs and DNA/LNA mixmer blocker complimentary to the site of E2f6 where miR-151-3p binds. (g) Northern analysis of processing of pre-miR-151 in Dicer knockout cells. For comparison, processing of pre-miR-151 from MEF cells is also shown. U6 serves as a loading control. (h) Dual luciferase reporter assay with E2f6 3′UTR in presence of a synthetic duplex miR-151 and increasing amounts of the (A to G substituted) form of pre-miR-151 (pEZX-DM) in Dicer KO cells Normalization was done with respect to duplex synthetic miR-122. As a control, pEZX-124 was used as shown. (df, h) For reporter assays, error bars, s.e.m. (n = 2 biological replicates, each with 4 technical replicates).

Supplementary Figure 3 miR-151-3p–binding site in E2f6 3′ UTR is not antagonistic or does not interfere with miR-151-5p binding to its site.

(a) Dual-luciferase reporter assay for E2f6 3′UTR construct in presence of increasing proportion of Sh-151-5p relative to either a dose of Sh-151-3p or a control Sh-S. (b) Dual-luciferase assay reporter assay for E2f6 3′UTR or E2f6-3p del (E2f6 3′UTR lacking miR-151-3p binding site) construct in presence of increasing dosage of Sh-151-5p. In each transfection, a fixed amount of Sh-151-3p is also transfected. (a, b) For reporter assays, error bars, s.e.m. (n = 2 biological replicates, each with 4 technical replicates).

Supplementary Figure 4 Pre-miR-151 binds to E2f6 3′ UTR in vitro.

Quantitative PCR analysis of E2f6 from a streptavidin pull-down of a biotinylated 4tU-containing synthetic pre-miR-151 RNA (I) oligo. Error bars, s.e.m. (n = 2 biological replicates, each with 3 technical replicates).

Supplementary Figure 5 Predicted widespread gene regulation by pre-miRNAs in competition with mature miRNAs for the same target.

(a) A flowchart of the bioinformatics pipeline to predict genome-wide interactions of the precursor miRNAs with their predicted target 3′UTR regions common to human and mouse that would overlap with the binding of their corresponding mature miRNA forms. (b) Dual-luciferase reporter assay for wild-type SNAI2 3′UTR or its modified forms (SNAI2 ran or SNAI2 swap) in presence of mature miR-124 (Sh-124). Error bars, s.e.m. (n = 2 biological replicates, each with 4 technical replicates).

Supplementary Figure 6 Original images of gels and blots used in this study.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 2 and 4–6 (PDF 1405 kb)

Supplementary Table 1

Genome-wide predictions of competitions between mature miRNAs and their precursors to bind to overlapping targets (XLSX 233 kb)

Supplementary Table 3

List of targets predicted to be regulated by precursors of repeat encoded miRNAs, miR-28 and miR-340, in humans (XLSX 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy-Chaudhuri, B., Valdmanis, P., Zhang, Y. et al. Regulation of microRNA-mediated gene silencing by microRNA precursors. Nat Struct Mol Biol 21, 825–832 (2014). https://doi.org/10.1038/nsmb.2862

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2862

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing