Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila

Subjects

Abstract

The accurate and thorough genome-wide detection of adenosine-to-inosine editing, a biologically indispensable process, has proven challenging. Here, we present a discovery pipeline in adult Drosophila, with 3,581 high-confidence editing sites identified with an estimated accuracy of 87%. The target genes and specific sites highlight global biological properties and functions of RNA editing, including hitherto-unknown editing in well-characterized classes of noncoding RNAs and 645 sites that cause amino acid substitutions, usually at conserved positions. The spectrum of functions that these gene targets encompass suggests that editing participates in a diverse set of cellular processes. Editing sites in Drosophila exhibit sequence-motif preferences and tend to be concentrated within a small subset of total RNAs. Finally, editing regulates expression levels of target mRNAs and strongly correlates with alternative splicing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection and measurement of editing sites with SMS.
Figure 2: Separation of true Drosophila editing sites from artifacts.
Figure 3: Biological properties of Drosophila editing sites.
Figure 4: Conservation of genomically encoded amino acids changed as a result of nonsynonymous editing.
Figure 5: Global biological properties of edited transcripts.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Mallela, A. & Nishikura, K. A-to-I editing of protein coding and noncoding RNAs. Crit. Rev. Biochem. Mol. Biol. 47, 493–501 (2012).

    Article  CAS  Google Scholar 

  2. Wulff, B.E., Sakurai, M. & Nishikura, K. Elucidating the inosinome: global approaches to adenosine-to-inosine RNA editing. Nat. Rev. Genet. 12, 81–85 (2011).

    Article  CAS  Google Scholar 

  3. Danecek, P. et al. High levels of RNA-editing site conservation amongst 15 laboratory mouse strains. Genome Biol. 13, 26 (2012).

    Article  CAS  Google Scholar 

  4. Peng, Z. et al. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat. Biotechnol. 30, 253–260 (2012).

    Article  CAS  Google Scholar 

  5. Ramaswami, G. et al. Identifying RNA editing sites using RNA sequencing data alone. Nat. Methods 10, 128–132 (2013).

    Article  CAS  Google Scholar 

  6. Sam, L.T. et al. A comparison of single molecule and amplification based sequencing of cancer transcriptomes. PLoS ONE 6, e17305 (2011).

    Article  CAS  Google Scholar 

  7. Kapranov, P. et al. The majority of total nuclear-encoded non-ribosomal RNA in a human cell is 'dark matter' un-annotated RNA. BMC Biol. 8, 149 (2010).

    Article  CAS  Google Scholar 

  8. Raz, T. et al. Protocol dependence of sequencing-based gene expression measurements. PLoS ONE 6, e19287 (2011).

    Article  CAS  Google Scholar 

  9. Wu, D., Lamm, A.T. & Fire, A.Z. Competition between ADAR and RNAi pathways for an extensive class of RNA targets. Nat. Struct. Mol. Biol. 18, 1094–1101 (2011).

    Article  CAS  Google Scholar 

  10. Hoopengardner, B., Bhalla, T., Staber, C. & Reenan, R. Nervous system targets of RNA editing identified by comparative genomics. Science 301, 832–836 (2003).

    Article  CAS  Google Scholar 

  11. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  12. Ho, T. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998).

    Article  Google Scholar 

  13. Palladino, M.J., Keegan, L.P., O'Connell, M.A. & Reenan, R.A. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102, 437–449 (2000).

    Article  CAS  Google Scholar 

  14. Stark, A. et al. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450, 219–232 (2007).

    Article  CAS  Google Scholar 

  15. Laurencikiene, J., Kallman, A.M., Fong, N., Bentley, D.L. & Ohman, M. RNA editing and alternative splicing: the importance of co-transcriptional coordination. EMBO Rep. 7, 303–307 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rodriguez, J., Menet, J.S. & Rosbash, M. Nascent-seq indicates widespread cotranscriptional RNA editing in Drosophila. Mol. Cell 47, 27–37 (2012).

    Article  CAS  Google Scholar 

  17. Ryman, K., Fong, N., Bratt, E., Bentley, D.L. & Ohman, M. The C-terminal domain of RNA Pol II helps ensure that editing precedes splicing of the GluR-B transcript. RNA 13, 1071–1078 (2007).

    Article  CAS  Google Scholar 

  18. Reenan, R.A. Molecular determinants and guided evolution of species-specific RNA editing. Nature 434, 409–413 (2005).

    Article  CAS  Google Scholar 

  19. Bass, B.L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002).

    Article  CAS  Google Scholar 

  20. Lehmann, K.A. & Bass, B.L. Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities. Biochemistry 39, 12875–12884 (2000).

    Article  CAS  Google Scholar 

  21. Li, J.B. et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324, 1210–1213 (2009).

    Article  CAS  Google Scholar 

  22. Polson, A.G. & Bass, B.L. Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J. 13, 5701–5711 (1994).

    Article  CAS  Google Scholar 

  23. Riedmann, E.M., Schopoff, S., Hartner, J.C. & Jantsch, M.F. Specificity of ADAR-mediated RNA editing in newly identified targets. RNA 14, 1110–1118 (2008).

    Article  CAS  Google Scholar 

  24. Eggington, J.M., Greene, T. & Bass, B.L. Predicting sites of ADAR editing in double-stranded RNA. Nat. Commun. 2, 319 (2011).

    Article  Google Scholar 

  25. Stefl, R. et al. The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell 143, 225–237 (2010).

    Article  CAS  Google Scholar 

  26. Graveley, B.R. et al. The developmental transcriptome of Drosophila melanogaster. Nature 471, 473–479 (2011).

    Article  CAS  Google Scholar 

  27. Larschan, E. et al. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 471, 115–118 (2011).

    CAS  PubMed  Google Scholar 

  28. Park, Y. et al. Sequence-specific targeting of Drosophila roX genes by the MSL dosage compensation complex. Mol. Cell 11, 977–986 (2003).

    Article  CAS  Google Scholar 

  29. Reichow, S.L., Hamma, T., Ferre-D'Amare, A.R. & Varani, G. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res. 35, 1452–1464 (2007).

    Article  CAS  Google Scholar 

  30. St Laurent, G. III, Savva, Y.A. & Reenan, R. Enhancing non-coding RNA information content with ADAR editing. Neurosci. Lett. 466, 89–98 (2009).

    Article  CAS  Google Scholar 

  31. Gardner, E.J., Nizami, Z.F., Talbot, C.C. Jr. & Gall, J.G. Stable intronic sequence RNA (sisRNA), a new class of noncoding RNA from the oocyte nucleus of Xenopus tropicalis. Genes Dev. 26, 2550–2559 (2012).

    Article  CAS  Google Scholar 

  32. St Laurent, G. III et al. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics 13, 504 (2012).

    Article  CAS  Google Scholar 

  33. Penalva, L.O. & Sanchez, L. RNA binding protein sex-lethal (Sxl) and control of Drosophila sex determination and dosage compensation. Microbiol Mol Biol Rev 67, 343–359 (2003).

    Article  CAS  Google Scholar 

  34. Scadden, A.D. The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat. Struct. Mol. Biol. 12, 489–496 (2005).

    Article  CAS  Google Scholar 

  35. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  36. Witten, J.T. & Ule, J. Understanding splicing regulation through RNA splicing maps. Trends Genet. 27, 89–97 (2011).

    Article  CAS  Google Scholar 

  37. Savva, Y.A. et al. Auto-regulatory RNA editing fine-tunes mRNA re-coding and complex behaviour in Drosophila. Nat. Commun. 3, 790 (2012).

    Article  Google Scholar 

  38. Jepson, J.E. et al. Engineered alterations in RNA editing modulate complex behavior in Drosophila: regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J. Biol. Chem. 286, 8325–8337 (2011).

    Article  CAS  Google Scholar 

  39. Bhogal, B. et al. Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein. Nat. Neurosci. 14, 1517–1524 (2011).

    Article  CAS  Google Scholar 

  40. You, F.M. et al. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9, 253 (2008).

    Article  Google Scholar 

  41. Chun, H. & Keles, S. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J. R. Stat. Soc. Series B Stat. Methodol. 72, 3–25 (2010).

    Article  Google Scholar 

  42. Liaw, A. & Weiner, M. Classification and regression by random forest. R News 2, 18–22 (2002).

    Google Scholar 

  43. Díaz-Uriarte, R. & Alvarez de Andres, S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7, 3 (2006).

    Article  Google Scholar 

  44. Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21, 3940–3941 (2005).

    Article  CAS  Google Scholar 

  45. R Development Core Team. R: A language and environment for statistical computing. 409 (2009).

  46. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article  Google Scholar 

  47. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  Google Scholar 

  48. Schneider, T.D. & Stephens, R.M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Y. Vyatkin for help with the bioinformatics analysis, D. Jones for help with SMS, M. Mazaitis for help with figure preparation, R. Bell for help with validations and J. Finch for expert technical assistance. We also would like to thank L. Sugden and members of the Reenan laboratory for helpful discussions. R.A.R. was supported as an Ellison Medical Research Foundation Senior Investigator.

Author information

Authors and Affiliations

Authors

Contributions

G.S.L. and R.A.R. designed the experiments. M.R.T., Y.A.S. and G.S.L. conducted the experiments. S.N., D.S., D.A., G.S.L. and P.K. did the bioinformatics analyses. G.S.L., R.A.R., C.E.L., D.S., M.R.T., P.K. and D.A. evaluated the results. R.M. generated mutants by homologous recombination and performed RNA editing analysis. M.R.T., S.N., P.K., G.S.L. and D.A. produced the figures. G.S.L., R.A.R., Y.A.S., C.E.L. and P.K. wrote the manuscript, with contributions from all the authors.

Corresponding author

Correspondence to Robert A Reenan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Notes 1–6 (PDF 3709 kb)

Supplementary Tables

Supplementary Tables 1–29 (XLSX 4627 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

St Laurent, G., Tackett, M., Nechkin, S. et al. Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila. Nat Struct Mol Biol 20, 1333–1339 (2013). https://doi.org/10.1038/nsmb.2675

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing