Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dimeric WH2 domains in Vibrio VopF promote actin filament barbed-end uncapping and assisted elongation

Abstract

Proteins containing repeats of the WASP homology 2 (WH2) actin-binding module are multifunctional regulators of actin nucleation and assembly. The bacterial effector VopF in Vibrio cholerae, like VopL in Vibrio parahaemolyticus, is a unique homodimer of three WH2 motifs linked by a C-terminal dimerization domain. We show that only the first and third WH2 domains of VopF bind G-actin in a non-nucleating, sequestered conformation. Moreover, dimeric WH2 domains in VopF give rise to unprecedented regulation of actin assembly. Specifically, two WH2 domains on opposite protomers of VopF direct filament assembly from actin or profilin–actin by binding terminal subunits and uncapping capping protein from barbed ends by a new mechanism. Thus, VopF does not nucleate filaments by capping a pointed-end F-actin hexamer. These properties may contribute to VopF pathogenicity, and they show how dimeric WH2 peptides may mediate processive filament growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of VopF constructs and complex formation with actin.
Figure 2: VopF nucleates actin filaments and sequesters G-actin.
Figure 3: VopF constructs containing three WH2 domains and the V1 moiety, in monomer or dimer form, sever filaments.
Figure 4: Dimerization of WH2 domains in VopF promotes their binding to barbed ends and is associated with permissive assembly from actin and profilin–actin.
Figure 5: VopF uncaps barbed ends from capping protein by a new mechanism.
Figure 6: Structural model for barbed-end binding and uncapping by VopF.
Figure 7: Model for VopF-assisted filament nucleation and barbed-end growth.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Insall, R.H. & Machesky, L.M. Actin dynamics at the leading edge: from simple machinery to complex networks. Dev. Cell 17, 310–322 (2009).

    Article  CAS  Google Scholar 

  2. Bugyi, B. & Carlier, M.F. Control of actin filament treadmilling in cell motility. Annu. Rev. Biophys. 39, 449–470 (2010).

    Article  CAS  Google Scholar 

  3. Rottner, K. & Stradal, T.E. Actin dynamics and turnover in cell motility. Curr. Opin. Cell Biol. 23, 569–578 (2011).

    Article  CAS  Google Scholar 

  4. Campellone, K.G. Cytoskeleton-modulating effectors of enteropathogenic and enterohaemorrhagic Escherichia coli: Tir, EspFU and actin pedestal assembly. FEBS J. 277, 2390–2402 (2010).

    Article  CAS  Google Scholar 

  5. Haglund, C.M. & Welch, M.D. Pathogens and polymers: microbe-host interactions illuminate the cytoskeleton. J. Cell Biol. 195, 7–17 (2011).

    Article  CAS  Google Scholar 

  6. Dodding, M.P. & Way, M. Nck- and N-WASP-dependent actin-based motility is conserved in divergent vertebrate poxviruses. Cell Host Microbe 6, 536–550 (2009).

    Article  CAS  Google Scholar 

  7. Haglund, C.M., Choe, J.E., Skau, C.T., Kovar, D.R. & Welch, M.D. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat. Cell Biol. 12, 1057–1063 (2010).

    Article  CAS  Google Scholar 

  8. Tam, V.C., Serruto, D., Dziejman, M., Brieher, W. & Mekalanos, J.J. A type III secretion system in Vibrio cholerae translocates a formin/spire hybrid-like actin nucleator to promote intestinal colonization. Cell Host Microbe 1, 95–107 (2007).

    Article  CAS  Google Scholar 

  9. Liverman, A.D. et al. Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc. Natl. Acad. Sci. USA 104, 17117–17122 (2007).

    Article  CAS  Google Scholar 

  10. Rottner, K., Hänisch, J. & Campellone, K.G. WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol. 20, 650–661 (2010).

    Article  CAS  Google Scholar 

  11. Wellington, A. et al. Spire contains actin binding domains and is related to ascidian posterior end mark-5. Development 126, 5267–5274 (1999).

    CAS  PubMed  Google Scholar 

  12. Carroll, E.A. et al. Cordon-bleu is a conserved gene involved in neural tube formation. Dev. Biol. 262, 16–31 (2003).

    Article  CAS  Google Scholar 

  13. Paunola, E., Mattila, P.K. & Lappalainen, P. WH2 domain: a small, versatile adapter for actin monomers. FEBS Lett. 513, 92–97 (2002).

    Article  CAS  Google Scholar 

  14. Dominguez, R. Actin filament nucleation and elongation factors–structure-function relationships. Crit. Rev. Biochem. Mol. Biol. 44, 351–366 (2009).

    Article  CAS  Google Scholar 

  15. Carlier, M.F., Husson, C., Renault, L. & Didry, D. Control of actin assembly by the WH2 domains and their multifunctional tandem repeats in Spire and Cordon-Bleu. Int. Rev. Cell. Mol. Biol. 290, 55–85 (2011).

    Article  CAS  Google Scholar 

  16. Quinlan, M.E., Heuser, J.E., Kerkhoff, E. & Mullins, R.D. Drosophila Spire is an actin nucleation factor. Nature 433, 382–388 (2005).

    Article  CAS  Google Scholar 

  17. Ahuja, R. et al. Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell 131, 337–350 (2007).

    Article  CAS  Google Scholar 

  18. Bosch, M. et al. Analysis of the function of Spire in actin assembly and its synergy with formin and profilin. Mol. Cell 28, 555–568 (2007).

    Article  CAS  Google Scholar 

  19. Husson, C., Renault, L., Didry, D., Pantaloni, D. & Carlier, M.F. Cordon-Bleu uses WH2 domains as multifunctional dynamizers of actin filament assembly. Mol. Cell 43, 464–477 (2011).

    Article  CAS  Google Scholar 

  20. Namgoong, S. et al. Mechanism of actin filament nucleation by Vibrio VopL and implications for tandem W domain nucleation. Nat. Struct. Mol. Biol. 18, 1060–1067 (2011).

    Article  CAS  Google Scholar 

  21. Yu, B., Cheng, H.C., Brautigam, C.A., Tomchick, D.R. & Rosen, M.K. Mechanism of actin filament nucleation by the bacterial effector VopL. Nat. Struct. Mol. Biol. 18, 1068–1074 (2011).

    Article  CAS  Google Scholar 

  22. Carlier, M.F. A new twist in actin filament nucleation. Nat. Struct. Mol. Biol. 18, 967–969 (2011).

    Article  CAS  Google Scholar 

  23. Van Troys, M. et al. The actin binding site of thymosin β4 mapped by mutational analysis. EMBO J. 15, 201–210 (1996).

    Article  CAS  Google Scholar 

  24. Co, C., Wong, D.T., Gierke, S., Chang, V. & Taunton, J. Mechanism of actin network attachment to moving membranes: barbed end capture by N-WASP WH2 domains. Cell 128, 901–913 (2007).

    Article  CAS  Google Scholar 

  25. Elzinga, M. & Phelan, J.J. F-actin is intermolecularly crosslinked by N,N′-p-phenylenedimaleimide through lysine-191 and cysteine-374. Proc. Natl. Acad. Sci. USA 81, 6599–6602 (1984).

    Article  CAS  Google Scholar 

  26. De La Cruz, E.M. et al. Thymosin-β4 changes the conformation and dynamics of actin monomers. Biophys. J. 78, 2516–2527 (2000).

    Article  CAS  Google Scholar 

  27. Hertzog, M. et al. The β-thymosin/WH2 domain; structural basis for the switch from inhibition to promotion of actin assembly. Cell 117, 611–623 (2004).

    Article  CAS  Google Scholar 

  28. Cooper, J.A. & Sept, D. New insights into mechanism and regulation of actin capping protein. Int. Rev. Cell. Mol. Biol. 267, 183–206 (2008).

    Article  CAS  Google Scholar 

  29. Narita, A., Takeda, S., Yamashita, A. & Maéda, Y. Structural basis of actin filament capping at the barbed-end: a cryo-electron microscopy study. EMBO J. 25, 5626–5633 (2006).

    Article  CAS  Google Scholar 

  30. Kim, T., Cooper, J.A. & Sept, D. The interaction of capping protein with the barbed end of the actin filament. J. Mol. Biol. 404, 794–802 (2010).

    Article  CAS  Google Scholar 

  31. Wear, M.A., Yamashita, A., Kim, K., Maéda, Y. & Cooper, J.A. How capping protein binds the barbed end of the actin filament. Curr. Biol. 13, 1531–1537 (2003).

    Article  CAS  Google Scholar 

  32. Fujiwara, I., Remmert, K. & Hammer, J.A. III. Direct observation of the uncapping of capping protein-capped actin filaments by CARMIL homology domain 3. J. Biol. Chem. 285, 2707–2720 (2010).

    Article  CAS  Google Scholar 

  33. Jégou, A. et al. Individual actin filaments in a microfluidic flow reveal the mechanism of ATP hydrolysis and give insight into the properties of profilin. PLoS Biol. 9, e1001161 (2011).

    Article  Google Scholar 

  34. Oda, T., Iwasa, M., Aihara, T., Maéda, Y. & Narita, A. The nature of the globular- to fibrous-actin transition. Nature 457, 441–445 (2009).

    Article  CAS  Google Scholar 

  35. Yamashita, A., Maeda, K. & Maéda, Y. Crystal structure of CapZ: structural basis for actin filament barbed end capping. EMBO J. 22, 1529–1538 (2003).

    Article  CAS  Google Scholar 

  36. Gayathri, P. et al. A bipolar spindle of antiparallel ParM Filaments drives bacterial plasmid segregation. Science 338, 1334–1337 (2012).

    Article  CAS  Google Scholar 

  37. Chereau, D. et al. Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc. Natl. Acad. Sci. USA 102, 16644–16649 (2005).

    Article  CAS  Google Scholar 

  38. Breitsprecher, D. et al. Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation. EMBO J. 27, 2943–2954 (2008).

    Article  CAS  Google Scholar 

  39. Hansen, S.D. & Mullins, R.D. VASP is a processive actin polymerase that requires monomeric actin for barbed end association. J. Cell Biol. 191, 571–584 (2010).

    Article  CAS  Google Scholar 

  40. Tripathi, R., Kaithwas, V., Dureja, C. & Raychaudhuri, S. Alanine-scanning mutagenesis of WH2 domains of VopF reveals residues important for conferring lethality in a Saccharomyces cerevisiae model. Gene 525, 116–123 (2013).

    Article  CAS  Google Scholar 

  41. Sept, D. & McCammon, J.A. Thermodynamics and kinetics of actin filament nucleation. Biophys. J. 81, 667–674 (2001).

    Article  CAS  Google Scholar 

  42. Wiesner, S. et al. A biomimetic motility assay provides insight into the mechanism of actin-based motility. J. Cell Biol. 160, 387–398 (2003).

    Article  CAS  Google Scholar 

  43. Mejillano, M.R. et al. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118, 363–373 (2004).

    Article  CAS  Google Scholar 

  44. Walsh, T.P., Weber, A., Higgins, J., Bonder, E.M. & Mooseker, M.S. Effect of villin on the kinetics of actin polymerization. Biochemistry 23, 2613–2621 (1984).

    Article  CAS  Google Scholar 

  45. Tam, V.C. et al. Functional analysis of VopF activity required for colonization in Vibrio cholerae. MBio. 1, e00289–10 (2010).

    Article  CAS  Google Scholar 

  46. Hernandez-Valladares, M. et al. Structural characterization of a capping protein interaction motif defines a family of actin filament regulators. Nat. Struct. Mol. Biol. 17, 497–503 (2010).

    Article  CAS  Google Scholar 

  47. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

    Article  CAS  Google Scholar 

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

M.-F.C. acknowledges support from an European Research Council advanced grant (249982), EU FP7 grant (241548), the Agence Nationale de la Recherce (Physique et Chimie du Vivant program 2006-2010) and the Ligue Nationale contre le Cancer (équipe labellisée). J.O. acknowledges the support of a short-term European Molecular Biology Organization fellowship (ASTF 256-2012). We thank K. Zeth and V. Chellamuthu for providing VopF protein in the initial stages of the work, Y. Maeda for kindly providing the atomic coordinates of capping protein bound to barbed ends and members of the European Research Council team for discussions. M.-F.C. dedicates this paper to the memory of Annemarie Weber.

Author information

Authors and Affiliations

Authors

Contributions

M.-F.C. conducted research; J.P. and J.O. designed and performed biochemical experiments and analyzed data; J.P., A.J. and G.R.-L. performed TIRF experiments; B.S.A. modeled capping protein and VopF on F-actin; B.G. purified proteins; M.-F.C. and J.P. wrote the paper.

Corresponding author

Correspondence to Marie-France Carlier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 687 kb)

Filament remains capped

In this movie (field width= 8 μm) the filament remains capped and does not grow upon flowing in 2 nM CP. (AVI 28 kb)

VopF uncaps barbed ends from capping protein

In this movie (field width= 17 μm), the filament is uncapped and grows at the same rate as when free upon flowing in 2 nM CP and 20 nM V2. (AVI 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pernier, J., Orban, J., Avvaru, B. et al. Dimeric WH2 domains in Vibrio VopF promote actin filament barbed-end uncapping and assisted elongation. Nat Struct Mol Biol 20, 1069–1076 (2013). https://doi.org/10.1038/nsmb.2639

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2639

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing