Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for the inhibition of Polo-like kinase 1

Abstract

Polo-like kinase 1 (PLK1) is a master regulator of mitosis and is considered a potential drug target for cancer therapy. PLK1 is characterized by an N-terminal kinase domain (KD) and a C-terminal Polo-box domain (PBD). The KD and PBD are mutually inhibited, but the molecular mechanisms of the autoinhibition remain unclear. Here we report the 2.3-Å crystal structure of the complex of the Danio rerio KD and PBD together with a PBD-binding motif of Drosophila melanogaster microtubule-associated protein 205 (Map205PBM). The structure reveals that the PBD binds and rigidifies the hinge region of the KD in a distinct conformation from that of the phosphopeptide-bound PBD. This structure provides a framework for understanding the autoinhibitory mechanisms of PLK1 and also sheds light on the activation mechanisms of PLK1 by phosphorylation or phosphopeptide binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the KD–PBD–Map205PBM complex.
Figure 2: Details of the KD-PBD interactions.
Figure 3: Details of the PBD-Map205PBM interactions.
Figure 4: Reduced flexibility of the KD by the PBD.
Figure 5: Inhibition and activation of PLK1.
Figure 6: Model of multilevel regulation of PLK1.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Barr, F.A., Sillje, H.H. & Nigg, E.A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol. 5, 429–440 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Lowery, D.M., Lim, D. & Yaffe, M.B. Structure and function of Polo-like kinases. Oncogene 24, 248–259 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Archambault, V. & Glover, D.M. Polo-like kinases: conservation and divergence in their functions and regulation. Nat. Rev. Mol. Cell Biol. 10, 265–275 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. van de Weerdt, B.C. & Medema, R.H. Polo-like kinases: a team in control of the division. Cell Cycle 5, 853–864 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Petronczki, M., Lenart, P. & Peters, J.M. Polo on the rise: from mitotic entry to cytokinesis with Plk1. Dev. Cell 14, 646–659 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Barr, F.A. & Gruneberg, U. Cytokinesis: placing and making the final cut. Cell 131, 847–860 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Eckerdt, F., Yuan, J. & Strebhardt, K. Polo-like kinases and oncogenesis. Oncogene 24, 267–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Strebhardt, K. & Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nat. Rev. Cancer 6, 321–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Schöffski, P. Polo-like kinase (PLK) inhibitors in preclinical and early clinical development in oncology. Oncologist 14, 559–570 (2009).

    Article  PubMed  CAS  Google Scholar 

  10. Strebhardt, K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat. Rev. Drug Discov. 9, 643–660 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, K.S., Grenfell, T.Z., Yarm, F.R. & Erikson, R.L. Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase Plk. Proc. Natl. Acad. Sci. USA 95, 9301–9306 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jang, Y.J., Lin, C.Y., Ma, S. & Erikson, R.L. Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc. Natl. Acad. Sci. USA 99, 1984–1989 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seong, Y.S. et al. A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U-2 OS cells. J. Biol. Chem. 277, 32282–32293 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Hanisch, A., Wehne, A., Nigg, E.A. & Sillje, H.H. Different Plk1 functions show distinct dependencies on polo-box domain-mediated targeting. Mol. Biol. Cell 17, 448–459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elia, A.E., Cantley, L.C. & Yaffe, M.B. Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299, 1228–1231 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Mundt, K.E., Golsteyn, R.M., Lane, H.A. & Nigg, E.A. On the regulation and function of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle progression. Biochem. Biophys. Res. Commun. 239, 377–385 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Elia, A.E. et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115, 83–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Qian, Y.W., Erikson, E. & Maller, J.L. Mitotic effects of a constitutively active mutant of the Xenopus polo-like kinase Plx1. Mol. Cell Biol. 19, 8625–8632 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jang, Y.J., Ma, S., Terada, Y. & Erikson, R.L. Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian polo-like kinase. J. Biol. Chem. 277, 44115–44120 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Lindon, C. & Pines, J. Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J. Cell Biol. 164, 233–241 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Macůrek, L. et al. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455, 119–123 (2008).

    Article  PubMed  CAS  Google Scholar 

  22. Seki, A., Coppinger, J.A., Jang, C.Y., Yates, J.R. & Fang, G. Bora and the kinase Aurora A cooperatively activate the kinase Plk1 and control mitotic entry. Science 320, 1655–1658 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van de Weerdt, B.C. et al. Uncoupling anaphase promoting complex/cyclosome activity from spindle assembly checkpoint control by deregulating polo-like kinase 1. Mol. Cell Biol. 25, 2031–2044 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsumoto, T. et al. Polo-like kinases mediate cell survival in mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA 106, 14542–14546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson, T.M., Antrobus, R. & Johnson, L.N. Plk1 activation by Ste20-like kinase (SLK) phosphorylation and polo-box phosphopeptide binding assayed with the substrate translationally controlled tumor protein (TCTP). Biochemistry 47, 3688–3696 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Goto, H. et al. Complex formation of Plk1 and INCENP required for metaphase–anaphase transition. Nat. Cell Biol. 8, 180–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Kang, Y.H. et al. Self-regulated Plk1 recruitment to kinetochores by the Plk1–PBIP1 interaction is critical for proper chromosome segregation. Mol. Cell 24, 409–422 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Qi, W., Tang, Z. & Yu, H. Phosphorylation- and polo-box-dependent binding of Plk1 to Bub1 is required for the kinetochore localization of Plk1. Mol. Biol. Cell 17, 3705–3716 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wong, O.K. & Fang, G. Cdk1 phosphorylation of BubR1 controls spindle checkpoint arrest and Plk1-mediated formation of the 3F3/2 epitope. J. Cell Biol. 179, 611–617 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Archambault, V., D'Avino, P.P., Deery, M.J., Lilley, K.S. & Glover, D.M. Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes Dev. 22, 2707–2720 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, J.E. et al. Polo-box domain: a versatile mediator of polo-like kinase function. Cell Mol. Life Sci. 67, 1957–1970 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kothe, M. et al. Structure of the catalytic domain of human polo-like kinase 1. Biochemistry 46, 5960–5971 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Cheng, K.Y., Lowe, E.D., Sinclair, J., Nigg, E.A. & Johnson, L.N. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J. 22, 5757–5768 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yun, S.M. et al. Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1. Nat. Struct. Mol. Biol. 16, 876–882 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elling, R.A., Fucini, R.V. & Romanowski, M.J. Structures of the wild-type and activated catalytic domains of Brachydanio rerio Polo-like kinase 1 (Plk1): changes in the active-site conformation and interactions with ligands. Acta Crystallogr. D Biol. Crystallogr. 64, 909–918 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, F. et al. Serendipitous alkylation of a Plk1 ligand uncovers a new binding channel. Nat. Chem. Biol. 7, 595–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Śledź, P. et al. From crystal packing to molecular recognition: prediction and discovery of a binding site on the surface of polo-like kinase 1. Angew. Chem. Int. Edn Engl. 50, 4003–4006 (2011).

    Article  CAS  Google Scholar 

  38. Parthasarathy, S. & Murthy, M.R.N. Analysis of temperature factor distribution in high-resolution protein structures. Protein Sci. 6, 2561–2567 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Deindl, S. et al. Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Cell 129, 735–746 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Masterson, L.R. et al. Dynamics connect substrate recognition to catalysis in protein kinase A. Nat. Chem. Biol. 6, 821–828 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sicheri, F., Moarefi, I. & Kuriyan, J. Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–609 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Xu, W., Harrison, S.C. & Eck, M.J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112, 859–871 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Lietha, D. et al. Structural basis for the autoinhibition of focal adhesion kinase. Cell 129, 1177–1187 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chao, L.H. et al. A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin-dependent kinase II holoenzyme. Cell 146, 732–745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  51. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roskoski, R. Jr. Assays of protein kinase. Methods Enzymol. 99, 3–6 (1983).

    Article  CAS  PubMed  Google Scholar 

  54. Barker, S.C. et al. Characterization of pp60c-src tyrosine kinase activities using a continuous assay: autoactivation of the enzyme is an intermolecular autophosphorylation process. Biochemistry 34, 14843–14851 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Reindl, W., Strebhardt, K. & Berg, T. A high-throughput assay based on fluorescence polarization for inhibitors of the polo-box domain of polo-like kinase 1. Anal. Biochem. 383, 205–209 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the Chinese Ministry of Science and Technology 2012CB722602 (to J.Q.), 2013CB911501 (to T.W.) and NSFC21290180 (to J.Q.), and the Shenzhen municipal Shuang Bai Project and Science and Technology innovation program CXB201005260059A (to J.Q.), ZDSY20120614144410389 and JCYJ20120614150904060 (to T.W.). We thank the staff of beamline BL17U at Shanghai Synchrotron Radiation Facility for the technical assistance during data collection.

Author information

Authors and Affiliations

Authors

Contributions

J.X. and J.Q. designed all experiments. J.X. and C.S. performed the experiments. T.W. contributed to crystallization, X-ray diffraction data collection and structural determination. All authors discussed the results and commented on the manuscript. J.Q. supervised all aspects of the project and wrote the manuscript.

Corresponding authors

Correspondence to Tao Wang or Junmin Quan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 4088 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Shen, C., Wang, T. et al. Structural basis for the inhibition of Polo-like kinase 1. Nat Struct Mol Biol 20, 1047–1053 (2013). https://doi.org/10.1038/nsmb.2623

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2623

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing