Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Homeostatic control of Argonaute stability by microRNA availability

Subjects

Abstract

Homeostatic mechanisms regulate the abundance of several components in small-RNA pathways. We used Drosophila and mammalian systems to demonstrate a conserved homeostatic system in which the status of miRNA biogenesis controls Argonaute protein stability. Clonal analyses of multiple mutants of core Drosophila miRNA factors revealed that stability of the miRNA effector AGO1 is dependent on miRNA biogenesis. Reciprocally, ectopic transcription of miRNAs within in vivo clones induced accumulation of AGO1, as did genetic interference with the ubiquitin-proteasome system. In mouse cells, we found that the stability of Ago2 declined in Dicer-knockout cells and was rescued by proteasome blockade or introduction of either Dicer plasmid or Dicer-independent miRNA constructs. Notably, Dicer-dependent miRNA constructs generated pre-miRNAs that bound Ago2 but did not rescue Ago2 stability. We conclude that Argonaute levels are finely tuned by cellular availability of mature miRNAs and the ubiquitin-proteasome system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Drosophila AGO1 protein level is reduced in the absence of miRNA biogenesis and accumulates upon depletion of GW182.
Figure 2: miRNA biogenesis stabilizes AGO1 post-transcriptionally, but siRNA biogenesis does not stabilize AGO2 in Drosophila.
Figure 3: Drosophila AGO1 accumulates with increased miRNA transcription and is turned over by the ubiquitin-proteasome system.
Figure 4: Mammalian Ago2 is stabilized by ongoing miRNA biogenesis.
Figure 5: Accumulation of mouse and Drosophila Argonautes is dependent on loading with functional small RNAs.

Similar content being viewed by others

References

  1. Czech, B. & Hannon, G.J. Small RNA sorting: matchmaking for Argonautes. Nat. Rev. Genet. 12, 19–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Kim, V.N., Han, J. & Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Yang, J.S. & Lai, E.C. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 43, 892–903 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fabian, M.R. & Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol. 19, 586–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Heo, I. & Kim, V.N. Regulating the regulators: posttranslational modifications of RNA silencing factors. Cell 139, 28–31 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75–84 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kadener, S. et al. Genome-wide identification of targets of the drosha-pasha/DGCR8 complex. RNA 15, 537–545 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smibert, P. et al. A Drosophila genetic screen yields allelic series of core microRNA biogenesis factors and reveals post-developmental roles for microRNAs. RNA 17, 1997–2010 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iki, T., Yoshikawa, M., Meshi, T. & Ishikawa, M. Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J. 31, 267–278 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Iki, T. et al. In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol. Cell 39, 282–291 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Miyoshi, T., Takeuchi, A., Siomi, H. & Siomi, M.C. A direct role for Hsp90 in pre-RISC formation in Drosophila. Nat. Struct. Mol. Biol. 17, 1024–1026 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Iwasaki, S. et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol. Cell 39, 292–299 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Johnston, M., Geoffroy, M.C., Sobala, A., Hay, R. & Hutvagner, G. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol. Biol. Cell 21, 1462–1469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ishizu, H., Siomi, H. & Siomi, M.C. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev. 26, 2361–2373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Handler, D. et al. A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. EMBO J. 30, 3977–3993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, F. et al. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 19, 1674–1679 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Förstemann, K., Horwich, M.D., Wee, L., Tomari, Y. & Zamore, P.D. Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130, 287–297 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Miyoshi, K., Okada, T.N., Siomi, H. & Siomi, M.C. Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA 15, 1282–1291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Azzam, G., Smibert, P., Lai, E.C. & Liu, J.L. Drosophila Argonaute 1 and its miRNA biogenesis partners are required for oocyte formation and germline cell division. Dev. Biol. 365, 384–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herranz, H. et al. The miRNA machinery targets Mei-P26 and regulates Myc protein levels in the Drosophila wing. EMBO J. 29, 1688–1698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yao, B., La, L.B., Chen, Y.C., Chang, L.J. & Chan, E.K. Defining a new role of GW182 in maintaining miRNA stability. EMBO Rep. 13, 1102–1108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Neumüller, R.A. et al. Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage. Nature 454, 241–245 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Okamura, K. et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453, 803–806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Czech, B. et al. Hierarchical rules for Argonaute loading in Drosophila. Mol. Cell 36, 445–456 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Czech, B. et al. An endogenous siRNA pathway in Drosophila. Nature 453, 798–802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Okamura, K., Robine, N., Liu, Y., Liu, Q. & Lai, E.C. R2D2 organizes small regulatory RNA pathways in Drosophila. Mol. Cell Biol. 31, 884–896 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, Y.S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Yang, J.S. et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA 107, 15163–15168 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Castilla-Llorente, V. et al. Mammalian GW220/TNGW1 is essential for the formation of GW/P bodies containing miRISC. J. Cell Biol. 198, 529–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gibbings, D. et al. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat. Cell Biol. 14, 1314–1321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, J.S. & Lai, E.C. Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates. Cell Cycle 9, 4455–4460 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maurin, T., Cazalla, D., Yang, J.S., Bortolamiol-Becet, D. & Lai, E.C. RNase III-independent microRNA biogenesis in mammalian cells. RNA 18, 2166–2173 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Okamura, K., Liu, N. & Lai, E.C. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol. Cell 36, 431–444 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Okamura, K. et al. The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat. Struct. Mol. Biol. 15, 354–363 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Elkayam, E. et al. The structure of human Argonaute-2 in complex with miR-20a. Cell 150, 100–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schirle, N.T. & MacRae, I.J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinez, N.J. & Gregory, R.I. Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA 19, 605–612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127, 747–757 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Diederichs, S. & Haber, D.A. Dual role for Argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Yang, J.S., Maurin, T. & Lai, E.C. Functional parameters of Dicer-independent microRNA biogenesis. RNA 18, 945–957 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Janas, M.M. et al. Alternative RISC assembly: binding and repression of microRNA-mRNA duplexes by human Ago proteins. RNA 18, 2041–2055 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, D. et al. Quantitative functions of Argonaute proteins in mammalian development. Genes Dev. 26, 693–704 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ameres, S.L., Hung, J.H., Xu, J., Weng, Z. & Zamore, P.D. Target RNA-directed tailing and trimming purifies the sorting of endo-siRNAs between the two Drosophila Argonaute proteins. RNA 17, 54–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao, S. et al. piRNA-triggered MIWI ubiquitination and removal by APC/C in late spermatogenesis. Dev. Cell 24, 13–25 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Bronevetsky, Y. et al. T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. J. Exp. Med. 210, 417–432 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tan, G.S. et al. Expanded RNA-binding activities of mammalian Argonaute 2. Nucleic Acids Res. 37, 7533–7545 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kataoka, Y., Takeichi, M. & Uemura, T. Developmental roles and molecular characterization of a Drosophila homologue of Arabidopsis Argonaute1, the founder of a novel gene superfamily. Genes Cells 6, 313–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Yang, L. et al. Argonaute 1 regulates the fate of germline stem cells in Drosophila. Development 134, 4265–4272 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Martin, R. et al. A Drosophila pasha mutant distinguishes the canonical miRNA and mirtron pathways. Mol. Cell Biol. 29, 861–870 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Schweisguth, F. Dominant-negative mutation in the b2 and b6 proteasome-subunit genes affect alternative cell fate decisions in the Drosophila sense organ lineage. Proc. Natl. Acad. Sci. USA 96, 11382–11386 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu, X.L., Li, Y., Wang, F. & Gao, F.B. The steady-state level of the nervous-system-specific microRNA-124a is regulated by dFMR1 in Drosophila. J. Neurosci. 28, 11883–11889 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bejarano, F. et al. A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development 139, 2821–2831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lai, E.C. & Rubin, G.M. neuralized functions cell-autonomously to regulate a subset of Notch-dependent processes during adult Drosophila development. Dev. Biol. 231, 217–233 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, N., Han, H. & Lasko, P. Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3′ UTR. Genes Dev. 23, 2742–2752 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Okamura, K., Hagen, J.W., Duan, H., Tyler, D.M. & Lai, E.C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Meister (Universität Regensburg, Regensburg, Germany), M. Overholtzer (Sloan-Kettering Institute, New York, New York, USA), J. Liu (Sloan-Kettering Institute, New York, New York, USA), X. Jiang (Sloan-Kettering Institute, New York, New York, USA), K. Okamura (Temasek Institute, Singapore), V. Kim (Seoul National University, Seoul, Korea), H. Siomi (Keio University, Tokyo, Japan), A. Tarakhovsky (Rockefeller University, New York, New York, USA), D. O'Carroll (European Molecular Biology Laboratory, Monterotondo Scalo, Italy), R. Carthew (Northwestern University, Chicago, Illinois, USA), F. Schweisguth (Institut Pasteur, Paris, France), F. Gao (University of Massachusetts Medical School, Worcester, Massachusetts, USA), Paul Lasko (McGill University, Montreal, Canada), the Vienna Drosophila RNAi Center (Vienna, Austria), the Transgenic RNAi Project at Harvard Medical School (Boston, Massachusetts, USA) and the Bloomington Drosophila Stock Center (Bloomington, Indiana, USA) for reagents and discussions. Work in J.-L.L.'s group was supported by the UK Medical Research Council. G.A. was supported by the Malaysian Ministry of Higher Education. Work in E.C.L.'s group was supported by the US National Institutes of Health R01-GM083300.

Author information

Authors and Affiliations

Authors

Contributions

P.S., G.A. and J.-L.L. made the initial observations that demonstrated AGO1 homeostasis in vivo. Mechanistic experiments were carried out in flies by P.S., in S2 cells by P.S. and J.-S.Y. and in mammalian cells by J.-S.Y. P.S., J.-S.Y. and E.C.L. wrote the text with input from G.A. and J.-L.L.

Corresponding authors

Correspondence to Ji-Long Liu or Eric C Lai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 3131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smibert, P., Yang, JS., Azzam, G. et al. Homeostatic control of Argonaute stability by microRNA availability. Nat Struct Mol Biol 20, 789–795 (2013). https://doi.org/10.1038/nsmb.2606

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2606

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing