Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural mimicry in transcription regulation of human RNA polymerase II by the DNA helicase RECQL5

Abstract

RECQL5 is a member of the highly conserved RecQ family of DNA helicases involved in DNA repair. RECQL5 interacts with RNA polymerase II (Pol II) and inhibits transcription of protein-encoding genes by an unknown mechanism. We show that RECQL5 contacts the Rpb1 jaw domain of Pol II at a site that overlaps with the binding site for the transcription elongation factor TFIIS. Our cryo-EM structure of elongating Pol II arrested in complex with RECQL5 shows that the RECQL5 helicase domain is positioned to sterically block elongation. The crystal structure of the RECQL5 KIX domain reveals similarities with TFIIS, and binding of RECQL5 to Pol II interferes with the ability of TFIIS to promote transcriptional read-through in vitro. Together, our findings reveal a dual mode of transcriptional repression by RECQL5 that includes structural mimicry of the Pol II–TFIIS interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An extended helicase domain fragment of RECQL5 interacts with the upper jaw domain of Pol II.
Figure 2: The RECQL5 KIX domain resembles domain II of TFIIS.
Figure 3: The RECQL5 IRI domain binds to a loop element in the Rpb1 jaw of Pol II.
Figure 4: Cryo-EM reconstruction of RECQL5-stalled Pol II elongation complex.
Figure 5: Both RECQL5 helicase and IRI domains are required for repression of transcription.
Figure 6: RECQL5 IRI domain competes with TFIIS for binding to Pol II and inhibits TFIIS-mediated read-through of intrinsic elongation blocks.
Figure 7: Dual mechanism of RECQL5-mediated transcriptional repression in DNA repair.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Chu, W.K. & Hickson, I.D. RecQ helicases: multifunctional genome caretakers. Nat. Rev. Cancer 9, 644–654 (2009).

    Article  CAS  Google Scholar 

  2. Singh, D.K., Ahn, B. & Bohr, V.A. Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging. Biogerontology 10, 235–252 (2009).

    Article  CAS  Google Scholar 

  3. Ellis, N.A. et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83, 655–666 (1995).

    Article  CAS  Google Scholar 

  4. Yu, C.E. et al. Positional cloning of the Werner's syndrome gene. Science 272, 258–262 (1996).

    Article  CAS  Google Scholar 

  5. Kitao, S., Lindor, N.M., Shiratori, M., Furuichi, Y. & Shimamoto, A. Rothmund–Thomson syndrome responsible gene, RECQL4: genomic structure and products. Genomics 61, 268–276 (1999).

    Article  CAS  Google Scholar 

  6. Bernstein, K.A., Gangloff, S. & Rothstein, R. The RecQ DNA helicases in DNA repair. Annu. Rev. Genet. 44, 393–417 (2010).

    Article  CAS  Google Scholar 

  7. Hu, Y. et al. Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers. Mol. Cell Biol. 25, 3431–3442 (2005).

    Article  CAS  Google Scholar 

  8. Hu, Y. et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev. 21, 3073–3084 (2007).

    Article  CAS  Google Scholar 

  9. Kanagaraj, R., Saydam, N., Garcia, P.L., Zheng, L. & Janscak, P. Human RECQ5β helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork. Nucleic Acids Res. 34, 5217–5231 (2006).

    Article  CAS  Google Scholar 

  10. Zheng, L. et al. MRE11 complex links RECQ5 helicase to sites of DNA damage. Nucleic Acids Res. 37, 2645–2657 (2009).

    Article  CAS  Google Scholar 

  11. Schwendener, S. et al. Physical interaction of RECQ5 helicase with RAD51 facilitates its anti-recombinase activity. J. Biol. Chem. 285, 15739–15745 (2010).

    Article  CAS  Google Scholar 

  12. Aygün, O., Svejstrup, J. & Liu, Y.A. RECQ5-RNA polymerase II association identified by targeted proteomic analysis of human chromatin. Proc. Natl. Acad. Sci. USA 105, 8580–8584 (2008).

    Article  Google Scholar 

  13. Izumikawa, K. et al. Association of human DNA helicase RecQ5β with RNA polymerase II and its possible role in transcription. Biochem. J. 413, 505–516 (2008).

    Article  CAS  Google Scholar 

  14. Aygün, O. et al. Direct inhibition of RNA polymerase II transcription by RECQL5. J. Biol. Chem. 284, 23197–23203 (2009).

    Article  Google Scholar 

  15. Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  Google Scholar 

  16. Reines, D., Conaway, J.W. & Conaway, R.C. The RNA polymerase II general elongation factors. Trends Biochem. Sci. 21, 351–355 (1996).

    Article  CAS  Google Scholar 

  17. Wind, M. & Reines, D. Transcription elongation factor SII. Bioessays 22, 327–336 (2000).

    Article  CAS  Google Scholar 

  18. Jeon, C. & Agarwal, K. Fidelity of RNA polymerase II transcription controlled by elongation factor TFIIS. Proc. Natl. Acad. Sci. USA 93, 13677–13682 (1996).

    Article  CAS  Google Scholar 

  19. Thomas, M.J., Platas, A.A. & Hawley, D.K. Transcriptional fidelity and proofreading by RNA polymerase II. Cell 93, 627–637 (1998).

    Article  CAS  Google Scholar 

  20. Christie, K.R., Awrey, D.E., Edwards, A.M. & Kane, C.M. Purified yeast RNA polymerase II reads through intrinsic blocks to elongation in response to the yeast TFIIS analogue, P37. J. Biol. Chem. 269, 936–943 (1994).

    CAS  PubMed  Google Scholar 

  21. Guglielmi, B., Soutourina, J., Esnault, C. & Werner, M. TFIIS elongation factor and Mediator act in conjunction during transcription initiation in vivo. Proc. Natl. Acad. Sci. USA 104, 16062–16067 (2007).

    Article  CAS  Google Scholar 

  22. Kim, B. et al. The transcription elongation factor TFIIS is a component of RNA polymerase II preinitiation complexes. Proc. Natl. Acad. Sci. USA 104, 16068–16073 (2007).

    Article  CAS  Google Scholar 

  23. Cheung, A.C. & Cramer, P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 471, 249–253 (2011).

    Article  CAS  Google Scholar 

  24. Awrey, D.E. et al. Yeast transcript elongation factor (TFIIS), structure and function. II: RNA polymerase binding, transcript cleavage, and read-through. J. Biol. Chem. 273, 22595–22605 (1998).

    Article  CAS  Google Scholar 

  25. Kettenberger, H., Armache, K.J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16, 955–965 (2004).

    Article  CAS  Google Scholar 

  26. Wang, D. et al. Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution. Science 324, 1203–1206 (2009).

    Article  CAS  Google Scholar 

  27. Reines, D., Wells, D., Chamberlin, M.J. & Kane, C.M. Identification of intrinsic termination sites in vitro for RNA polymerase II within eukaryotic gene sequences. J. Mol. Biol. 196, 299–312 (1987).

    Article  CAS  Google Scholar 

  28. Reines, D., Chamberlin, M.J. & Kane, C.M. Transcription elongation factor SII (TFIIS) enables RNA polymerase II to elongate through a block to transcription in a human gene in vitro. J. Biol. Chem. 264, 10799–10809 (1989).

    CAS  PubMed  Google Scholar 

  29. Pokholok, D.K., Hannett, N.M. & Young, R.A. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol. Cell 9, 799–809 (2002).

    Article  CAS  Google Scholar 

  30. Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).

    Article  CAS  Google Scholar 

  31. Phatnani, H.P. & Greenleaf, A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).

    Article  CAS  Google Scholar 

  32. Selth, L.A., Sigurdsson, S. & Svejstrup, J.Q. Transcript elongation by RNA polymerase II. Annu. Rev. Biochem. 79, 271–293 (2010).

    Article  CAS  Google Scholar 

  33. Tadokoro, T. et al. Human RECQL5 participates in the removal of endogenous DNA damage. Mol. Biol. Cell 23, 4273–4285 (2012).

    Article  CAS  Google Scholar 

  34. Söding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).

    Article  Google Scholar 

  35. Wu, X., Rossettini, A. & Hanes, S.D. The ESS1 prolyl isomerase and its suppressor BYE1 interact with RNA pol II to inhibit transcription elongation in Saccharomyces cerevisiae. Genetics 165, 1687–1702 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    Article  CAS  Google Scholar 

  37. Ariyoshi, M. & Schwabe, J.W. A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling. Genes Dev. 17, 1909–1920 (2003).

    Article  CAS  Google Scholar 

  38. García-Domingo, D. et al. DIO-1 is a gene involved in onset of apoptosis in vitro, whose misexpression disrupts limb development. Proc. Natl. Acad. Sci. USA 96, 7992–7997 (1999).

    Article  Google Scholar 

  39. Kassube, S.A. et al. Structural insights into transcriptional repression by noncoding RNAs that bind to human Pol II. J. Mol. Biol. 10.1016/j.jmb.2012.08.024. (2012).

  40. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  Google Scholar 

  41. Lander, G.C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009).

    Article  CAS  Google Scholar 

  42. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  Google Scholar 

  43. Scheres, S.H., Nunez-Ramirez, R., Sorzano, C.O., Carazo, J.M. & Marabini, R. Image processing for electron microscopy single-particle analysis using XMIPP. Nat. Protoc. 3, 977–990 (2008).

    Article  CAS  Google Scholar 

  44. Baldwin, P.R. & Penczek, P.A. The transform class in SPARX and EMAN2. J. Struct. Biol. 157, 250–261 (2007).

    Article  CAS  Google Scholar 

  45. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  Google Scholar 

  46. Kostek, S.A. et al. Molecular architecture and conformational flexibility of human RNA polymerase II. Structure 14, 1691–1700 (2006).

    Article  CAS  Google Scholar 

  47. Heymann, J.B. & Belnap, D.M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007).

    Article  CAS  Google Scholar 

  48. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  49. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  50. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  51. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr. 59, 2023–2030 (2003).

    Article  CAS  Google Scholar 

  52. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  53. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  54. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  55. Classen, S. et al. Software for the high-throughput collection of SAXS data using an enhanced Blu-Ice/DCS control system. J. Synchrotron Radiat. 17, 774–781 (2010).

    Article  CAS  Google Scholar 

  56. Hura, G.L. et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat. Methods 6, 606–612 (2009).

    Article  CAS  Google Scholar 

  57. Konarev, P.V., Petoukhov, M.V., Volkov, V.V. & Svergun, D.I. ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Crystallogr. 39, 277–286 (2006).

    Article  CAS  Google Scholar 

  58. Schneidman-Duhovny, D., Hammel, M. & Sali, A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 38, W540–W544 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Lander and P. Grob for advice on EM data collection and processing, and F. Bleichert for critical reading of the manuscript. We thank C. Kane (University of California, Berkeley) for providing the pGEMTerm plasmid, advice on the transcriptional read-through experiment and critical reading of the manuscript. We are grateful to J. Holton (beamline 8.3.1, Advanced Light Source, Lawrence Berkeley National Laboratory) for assistance with synchrotron data collection. We thank D. King (Howard Hughes Medical Institute, University of California, Berkeley) for synthesis of the CTD peptide used for purification of Pol II. S.A.K. was supported by a fellowship from the Boehringer Ingelheim Fonds. The work was supported by National Institute of General Medical Sciences grant GM63072 (E.N.). S.T. and the SIBYLS beamline (12.3.1) at the Advanced Light Source are supported by NIH grant P01 CA092584 and the US Department of Energy Integrated Diffraction Analysis Technologies (IDAT) under contract number DE-AC02-05CH11231. E.N. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Contributions

S.A.K. conceived the study, designed and performed experiments and analyzed the data. M.J. and S.A.K. collected and processed X-ray diffraction data. J.F. and S.A.K. purified human Pol II. S.T. collected and processed SAXS data. E.N. oversaw the project and S.A.K., M.J. and E.N. prepared the manuscript.

Corresponding authors

Correspondence to Susanne A Kassube or Eva Nogales.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 3635 kb)

Supplementary Movie 1

Cryo-EM model of a RECQL5-stalled Pol II elongation complex. (MOV 62768 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassube, S., Jinek, M., Fang, J. et al. Structural mimicry in transcription regulation of human RNA polymerase II by the DNA helicase RECQL5. Nat Struct Mol Biol 20, 892–899 (2013). https://doi.org/10.1038/nsmb.2596

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2596

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing