Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substrate-specific structural rearrangements of human Dicer

Abstract

Dicer has a central role in RNA-interference pathways by cleaving double-stranded RNAs (dsRNAs) to produce small regulatory RNAs. Human Dicer can process long double-stranded and hairpin precursor RNAs to yield short interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. Previous studies have shown that pre-miRNAs are cleaved more rapidly than pre-siRNAs in vitro and are the predominant natural Dicer substrates. We have used EM and single-particle analysis of Dicer–RNA complexes to gain insight into the structural basis for human Dicer's substrate preference. Our studies show that Dicer traps pre-siRNAs in a nonproductive conformation, whereas interactions of Dicer with pre-miRNAs and dsRNA-binding proteins induce structural changes in the enzyme that enable productive substrate recognition in the central catalytic channel. These findings implicate RNA structure and cofactors in determining substrate recognition and processing efficiency by human Dicer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain architecture and cryo-EM structure of human Dicer.
Figure 2: A pre-siRNA spans human Dicer between the cap and branch while a pre-miRNA binds the platform of the enzyme.
Figure 3: RNA substrates induce structural rearrangements in human Dicer.
Figure 4: A domain reorganization of human Dicer in response to pre-miRNAs correlates with increased dicing efficiency.
Figure 5: dsRBPs promote conformational sampling of human Dicer for dsRNA substrate loading.
Figure 6: 3D reconstructions of major Dicer conformers show that branch position affects accessibility to the platform.
Figure 7: Model for small RNA processing by human Dicer.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Referenced accessions

Protein Data Bank

References

  1. Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  Google Scholar 

  2. Carmell, M.A. & Hannon, G.J. RNase III enzymes and the initiation of gene silencing. Nat. Struct. Mol. Biol. 11, 214–218 (2004).

    Article  CAS  Google Scholar 

  3. Macrae, I.J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006).

    Article  CAS  Google Scholar 

  4. MacRae, I.J., Zhou, K. & Doudna, J.A. Structural determinants of RNA recognition and cleavage by Dicer. Nat. Struct. Mol. Biol. 14, 934–940 (2007).

    Article  CAS  Google Scholar 

  5. Park, J.E. et al. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475, 201–205 (2011).

    Article  CAS  Google Scholar 

  6. Tomari, Y. & Zamore, P.D. Perspective: machines for RNAi. Genes Dev. 19, 517–529 (2005).

    Article  CAS  Google Scholar 

  7. Calabrese, J.M., Seila, A.C., Yeo, G.W. & Sharp, P.A. RNA sequence analysis defines Dicer's role in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 104, 18097–18102 (2007).

    Article  CAS  Google Scholar 

  8. Chiang, H.R. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009 (2010).

    Article  CAS  Google Scholar 

  9. Ma, E., MacRae, I.J., Kirsch, J.F. & Doudna, J.A. Autoinhibition of human dicer by its internal helicase domain. J. Mol. Biol. 380, 237–243 (2008).

    Article  CAS  Google Scholar 

  10. Chakravarthy, S., Sternberg, S.H., Kellenberger, C.A. & Doudna, J.A. Substrate-specific kinetics of Dicer-catalyzed RNA processing. J. Mol. Biol. 404, 392–402 (2010).

    Article  CAS  Google Scholar 

  11. Lee, H.Y. & Doudna, J.A. TRBP alters human precursor microRNA processing in vitro. RNA 18, 2012–2019 (2012).

    Article  CAS  Google Scholar 

  12. Noland, C.L., Ma, E. & Doudna, J.A. siRNA repositioning for guide strand selection by human Dicer complexes. Mol. Cell 43, 110–121 (2011).

    Article  CAS  Google Scholar 

  13. Gregory, R.I., Chendrimada, T.P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640 (2005).

    Article  CAS  Google Scholar 

  14. Welker, N.C. et al. Dicer's helicase domain discriminates dsRNA termini to promote an altered reaction mode. Mol. Cell 41, 589–599 (2011).

    Article  CAS  Google Scholar 

  15. Tsutsumi, A., Kawamata, T., Izumi, N., Seitz, H. & Tomari, Y. Recognition of the pre-miRNA structure by Drosophila Dicer-1. Nat. Struct. Mol. Biol. 18, 1153–1158 (2011).

    Article  CAS  Google Scholar 

  16. Ma, E., Zhou, K., Kidwell, M.A. & Doudna, J.A. Coordinated activities of human dicer domains in regulatory RNA processing. J. Mol. Biol. 422, 466–476 (2012).

    Article  CAS  Google Scholar 

  17. Lau, P.W., Potter, C.S., Carragher, B. & MacRae, I.J. Structure of the human Dicer-TRBP complex by electron microscopy. Structure 17, 1326–1332 (2009).

    Article  CAS  Google Scholar 

  18. Wang, H.W. et al. Structural insights into RNA processing by the human RISC-loading complex. Nat. Struct. Mol. Biol. 16, 1148–1153 (2009).

    Article  CAS  Google Scholar 

  19. Lau, P.W. et al. The molecular architecture of human Dicer. Nat. Struct. Mol. Biol. 19, 436–440 (2012).

    Article  CAS  Google Scholar 

  20. Danev, R. & Nagayama, K. Transmission electron microscopy with Zernike phase plate. Ultramicroscopy 88, 243–252 (2001).

    Article  CAS  Google Scholar 

  21. Danev, R. & Nagayama, K. Single particle analysis based on Zernike phase contrast transmission electron microscopy. J. Struct. Biol. 161, 211–218 (2008).

    Article  CAS  Google Scholar 

  22. Shigematsu, H., Sokabe, T., Danev, R., Tominaga, M. & Nagayama, K. A 3.5-nm structure of rat TRPV4 cation channel revealed by Zernike phase-contrast cryoelectron microscopy. J. Biol. Chem. 285, 11210–11218 (2010).

    Article  CAS  Google Scholar 

  23. Shimada, A. et al. Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129, 761–772 (2007).

    Article  CAS  Google Scholar 

  24. Yamaguchi, M., Danev, R., Nishiyama, K., Sugawara, K. & Nagayama, K. Zernike phase contrast electron microscopy of ice-embedded influenza A virus. J. Struct. Biol. 162, 271–276 (2008).

    Article  CAS  Google Scholar 

  25. Murata, K. et al. Zernike phase contrast cryo-electron microscopy and tomography for structure determination at nanometer and subnanometer resolutions. Structure 18, 903–912 (2010).

    Article  CAS  Google Scholar 

  26. Haase, A.D. et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6, 961–967 (2005).

    Article  CAS  Google Scholar 

  27. Danev, R., Glaeser, R.M. & Nagayama, K. Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. Ultramicroscopy 109, 312–325 (2009).

    Article  CAS  Google Scholar 

  28. MacRae, I.J. & Doudna, J.A. An unusual case of pseudo-merohedral twinning in orthorhombic crystals of Dicer. Acta Crystallogr. D Biol. Crystallogr. 63, 993–999 (2007).

    Article  CAS  Google Scholar 

  29. Kelley, L.A. & Sternberg, M.J. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

    Article  CAS  Google Scholar 

  30. Luo, D. et al. Structural insights into RNA recognition by RIG-I. Cell 147, 409–422 (2011).

    Article  CAS  Google Scholar 

  31. Scheres, S.H. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4, 27–29 (2007).

    Article  CAS  Google Scholar 

  32. Roberts, A.J. et al. AAA+ Ring and linker swing mechanism in the dynein motor. Cell 136, 485–495 (2009).

    Article  CAS  Google Scholar 

  33. Cianfrocco, M.A. et al. Human TFIID binds to core promoter DNA in a reorganized structural state. Cell 152, 120–131 (2013).

    Article  CAS  Google Scholar 

  34. MacRae, I.J., Ma, E., Zhou, M., Robinson, C.V. & Doudna, J.A. In vitro reconstitution of the human RISC-loading complex. Proc. Natl. Acad. Sci. USA 105, 512–517 (2008).

    Article  CAS  Google Scholar 

  35. Giraldez, A.J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  Google Scholar 

  36. Daniels, S.M. et al. Characterization of the TRBP domain required for dicer interaction and function in RNA interference. BMC Mol. Biol. 10, 38 (2009).

    Article  Google Scholar 

  37. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136 (1987).

    Article  CAS  Google Scholar 

  38. Kim, D.H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol. 23, 222–226 (2005).

    Article  CAS  Google Scholar 

  39. Nam, Y., Chen, C., Gregory, R.I., Chou, J.J. & Sliz, P. Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147, 1080–1091 (2011).

    Article  CAS  Google Scholar 

  40. Michlewski, G. & Cáceres, J.F. Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis. Nat. Struct. Mol. Biol. 17, 1011–1018 (2010).

    Article  CAS  Google Scholar 

  41. Mayr, F., Schütz, A., Döge, N. & Heinemann, U. The Lin28 cold-shock domain remodels pre-let-7 microRNA. Nucleic Acids Res. 40, 7492–7506 (2012).

    Article  CAS  Google Scholar 

  42. Gu, S. et al. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell 151, 900–911 (2012).

    Article  CAS  Google Scholar 

  43. Cenik, E.S. et al. Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease. Mol. Cell 42, 172–184 (2011).

    Article  CAS  Google Scholar 

  44. Zhang, H., Kolb, F.A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885 (2002).

    Article  CAS  Google Scholar 

  45. Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).

    Article  CAS  Google Scholar 

  46. Cheloufi, S., Dos Santos, C.O., Chong, M.M. & Hannon, G.J.A. Dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).

    Article  CAS  Google Scholar 

  47. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  Google Scholar 

  48. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  Google Scholar 

  49. Hosokawa, F., Danev, R., Arai, Y. & Nagayama, K. Transfer doublet and an elaborated phase plate holder for 120 kV electron-phase microscope. J. Electron Microsc. (Tokyo) 54, 317–324 (2005).

    Article  CAS  Google Scholar 

  50. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  51. Scheres, S.H., Núñez-Ramírez, R., Sorzano, C.O., Carazo, J.M. & Marabini, R. Image processing for electron microscopy single-particle analysis using XMIPP. Nat. Protoc. 3, 977–990 (2008).

    Article  CAS  Google Scholar 

  52. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  Google Scholar 

  53. Hohn, M. et al. SPARX, a new environment for cryo-EM image processing. J. Struct. Biol. 157, 47–55 (2007).

    Article  CAS  Google Scholar 

  54. Wiedenheft, B. et al. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477, 486–489 (2011).

    Article  CAS  Google Scholar 

  55. Ogura, T., Iwasaki, K. & Sato, C. Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking. J. Struct. Biol. 143, 185–200 (2003).

    Article  CAS  Google Scholar 

  56. Voss, N.R. et al. A toolbox for ab initio 3-D reconstructions in single-particle electron microscopy. J. Struct. Biol. 169, 389–398 (2010).

    Article  CAS  Google Scholar 

  57. Lander, G.C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009).

    Article  CAS  Google Scholar 

  58. Voss, N.R., Yoshioka, C.K., Radermacher, M., Potter, C.S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009).

    Article  CAS  Google Scholar 

  59. Scheres, S.H. et al. Maximum-likelihood multi-reference refinement for electron microscopy images. J. Mol. Biol. 348, 139–149 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Filipowicz (Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland) for antibodies to human Dicer; A. Giraldez (Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA) for purified pre-miR-430; G. Lander, P. Grob and T. Houweling for expert EM and image-processing assistance; A. Brewster for help with creating the homology model of human Dicer; T. Albergo for help with particle picking; members of the Wang, Doudna, Nagayama and Nogales labs for helpful discussions; A. Giraldez, D. Cifuentes, A. Bazzini, S. Baserga, J. Steitz and members of the Giraldez and Baserga labs for discussion and expert technical assistance; H. Okawara and M. Ohara (Division of Nano-Structure Physiology, Okazaki Institute for Integrative Bioscience, Okazaki, Japan) for preparing the Zernike phase plates; and the Yale Center for Cellular and Molecular Imaging and Yale Center for High Performance Computation in Biology and Medicine. D.W.T. is supported as a US National Science Foundation (NSF) Graduate Research Fellow and as an NSF and Japan Society for the Promotion of Science East Asia and Pacific Summer Institute Fellow. This work was supported in part by US National Institutes of Health (NIH) molecular biophysics training grant 5 T32 GM008283 (D.W.T.), the Core Research for Evolutional Science and Technology of Japan Science and Technology Agency (K.N.), NIH 5R01GM073794 (J.A.D.), Human Frontiers in Science Program RPG0039/2008-C (E.N.), the Smith Family Awards Program for Excellence in Biomedical Research (H.-W.W.) and National Natural Science Foundation of China 31270765 (H.-W.W.). J.A.D. and E.N. are supported as Howard Hughes Medical Institute Investigators.

Author information

Authors and Affiliations

Authors

Contributions

D.W.T. performed all E.M. and single-particle analysis. E.M. performed protein and RNA purification. H.S. performed ZPC-cryo-EM, supervised by K.N. M.A.C. and E.N. assisted with focused classification. C.L.N. purified Dicer–PACT complex. D.W.T., J.A.D. and H.-W.W. planned the experiments and wrote the manuscript. All authors analyzed and interpreted data and provided comments on the manuscript.

Corresponding authors

Correspondence to Jennifer A Doudna or Hong-Wei Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1 and 2, and Supplementary Note (PDF 4478 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, D., Ma, E., Shigematsu, H. et al. Substrate-specific structural rearrangements of human Dicer. Nat Struct Mol Biol 20, 662–670 (2013). https://doi.org/10.1038/nsmb.2564

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2564

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing