Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Friedreich's ataxia–associated GAA repeats induce replication-fork reversal and unusual molecular junctions

Abstract

Expansion of GAA/TTC repeats is the causative event in Friedreich's ataxia. GAA repeats have been shown to hinder replication in model systems, but the mechanisms of replication interference and expansion in human cells remained elusive. To study in vivo replication structures at GAA repeats, we designed a new plasmid-based system that permits the analysis of human replication intermediates by two-dimensional gel electrophoresis and EM. We found that replication forks transiently pause and reverse at long GAA/TTC tracts in both orientations. Furthermore, we identified replication-associated intramolecular junctions, located between GAA/TTC repeats and other homopurine-homopyrimidine tracts, that were associated with breakage of the plasmid fork not traversing the repeats. Finally, we detected postreplicative, sister-chromatid hemicatenanes on control plasmids, which were replaced by persistent homology-driven junctions at GAA/TTC repeats. These data prove that GAA/TTC tracts interfere with replication in humans and implicate postreplicative mechanisms in trinucleotide repeat expansion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expanded GAA/TTC repeats induce unusual replication intermediates in human cells.
Figure 2: GAA/TTC-specific intermediates are largely homologous-recombination independent and display biochemical properties of triplex DNA.
Figure 3: Replication-associated DNA looping at expanded GAA/TTC repeats.
Figure 4: GAA/TTC repeats induce replication-fork reversal and affect the integrity of the sister fork.
Figure 5: GAA repeats induce unusual postreplicative junctions involving the repetitive sequences.
Figure 6: Model of replication interference by expanded GAA/TTC repeats and implications for repeat stability.

Similar content being viewed by others

References

  1. McMurray, C.T. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 11, 786–799 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mirkin, S.M. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Schmucker, S. & Puccio, H. Understanding the molecular mechanisms of Friedreich's ataxia to develop therapeutic approaches. Hum. Mol. Genet. 19, R103–R110 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Gacy, A.M. et al. GAA instability in Friedreich's Ataxia shares a common, DNA-directed and intraallelic mechanism with other trinucleotide diseases. Mol. Cell 1, 583–593 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Sakamoto, N. et al. Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich's ataxia. Mol. Cell 3, 465–475 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Vetcher, A.A., Napierala, M. & Wells, R.D. Sticky DNA: effect of the polypurine.polypyrimidine sequence. J. Biol. Chem. 277, 39228–39234 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Ditch, S., Sammarco, M.C., Banerjee, A. & Grabczyk, E. Progressive GAA.TTC repeat expansion in human cell lines. PLoS Genet. 5, e1000704 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rindler, P.M. & Bidichandani, S.I. Role of transcript and interplay between transcription and replication in triplet-repeat instability in mammalian cells. Nucleic Acids Res. 39, 526–535 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Mirkin, S.M. & Smirnova, E.V. Positioned to expand. Nat. Genet. 31, 5–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Samadashwily, G.M., Raca, G. & Mirkin, S.M. Trinucleotide repeats affect DNA replication in vivo. Nat. Genet. 17, 298–304 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Voineagu, I., Surka, C.F., Shishkin, A.A., Krasilnikova, M.M. & Mirkin, S.M. Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility. Nat. Struct. Mol. Biol. 16, 226–228 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Freudenreich, C.H., Kantrow, S.M. & Zakian, V.A. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279, 853–856 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Krasilnikova, M.M. & Mirkin, S.M. Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo. Mol. Cell Biol. 24, 2286–2295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miret, J.J., Pessoa-Brandao, L. & Lahue, R.S. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95, 12438–12443 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fouché, N., Ozgur, S., Roy, D. & Griffith, J.D. Replication fork regression in repetitive DNAs. Nucleic Acids Res. 34, 6044–6050 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mirkin, S.M. DNA structures, repeat expansions and human hereditary disorders. Curr. Opin. Struct. Biol. 16, 351–358 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Shishkin, A.A. et al. Large-scale expansions of Friedreich's ataxia GAA repeats in yeast. Mol. Cell 35, 82–92 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daee, D.L., Mertz, T. & Lahue, R.S. Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae. Mol. Cell Biol. 27, 102–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Kerrest, A. et al. SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nat. Struct. Mol. Biol. 16, 159–167 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chandok, G.S., Patel, M.P., Mirkin, S.M. & Krasilnikova, M.M. Effects of Friedreich's ataxia GAA repeats on DNA replication in mammalian cells. Nucleic Acids Res. 40, 3964–3974 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cleary, J.D., Nichol, K., Wang, Y.H. & Pearson, C.E. Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells. Nat. Genet. 31, 37–46 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. M. Rindler, P., Clark, R.M., Pollard, L.M., De Biase, I. & Bidichandani, S.I. Replication in mammalian cells recapitulates the locus-specific differences in somatic instability of genomic GAA triplet-repeats. Nucleic Acids Res. 34, 6352–6361 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sogo, J.M., Stahl, H., Koller, T. & Knippers, R. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J. Mol. Biol. 189, 189–204 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Follonier, C. & Lopes, M. Combined bi-dimensional electrophoresis and electron microscopy to study specific plasmid DNA replication intermediates in human cells. Methods Mol. Biol. (in the press).

  25. Bénard, M., Maric, C. & Pierron, G. DNA replication-dependent formation of joint DNA molecules in Physarum polycephalum. Mol. Cell 7, 971–980 (2001).

    Article  PubMed  Google Scholar 

  26. Lopes, M., Cotta-Ramusino, C., Liberi, G. & Foiani, M. Branch migrating sister chromatid junctions form at replication origins through Rad51/Rad52-independent mechanisms. Mol. Cell 12, 1499–1510 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Lucas, I. & Hyrien, O. Hemicatenanes form upon inhibition of DNA replication. Nucleic Acids Res. 28, 2187–2193 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Segurado, M., Gomez, M. & Antequera, F. Increased recombination intermediates and homologous integration hot spots at DNA replication origins. Mol. Cell 10, 907–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Zou, H. & Rothstein, R. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90, 87–96 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Liberi, G. et al. Methods to study replication fork collapse in budding yeast. Methods Enzymol. 409, 442–462 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Neelsen, K.J., Ray Chaudhuri, A., Follonier, C., Herrador, R. & Lopes, M. Visualization and interpretation of eukaryotic DNA replication intermediates by electron microscopy in vivo. Methods Mol. Biol. (in the press).

  32. Kalejta, R.F. & Hamlin, J.L. Composite patterns in neutral/neutral two-dimensional gels demonstrate inefficient replication origin usage. Mol. Cell Biol. 16, 4915–4922 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duckett, D.R. et al. The structure of the Holliday junction, and its resolution. Cell 55, 79–89 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Malkov, V.A., Voloshin, O.N., Soyfer, V.N. & Frank-Kamenetskii, M.D. Cation and sequence effects on stability of intermolecular pyrimidine-purine-purine triplex. Nucleic Acids Res. 21, 585–591 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Son, L.S., Bacolla, A. & Wells, R.D. Sticky DNA: in vivo formation in E. coli and in vitro association of long GAA*TTC tracts to generate two independent supercoiled domains. J. Mol. Biol. 360, 267–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Lopes, M. Electron microscopy methods for studying in vivo DNA replication intermediates. Methods Mol. Biol. 521, 605–631 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Beal, P.A. & Dervan, P.B. The influence of single base triplet changes on the stability of a pur.pur.pyr triple helix determined by affinity cleaving. Nucleic Acids Res. 20, 2773–2776 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Potaman, V.N. et al. Length-dependent structure formation in Friedreich ataxia (GAA)n*(TTC)n repeats at neutral pH. Nucleic Acids Res. 32, 1224–1231 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pandolfo, M. Friedreich ataxia: the clinical picture. J. Neurol. 256 (suppl. 1), 3–8 (2009).

    Article  PubMed  Google Scholar 

  40. Frank-Kamenetskii, M.D. & Mirkin, S.M. Triplex DNA structures. Annu. Rev. Biochem. 64, 65–95 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Kovtun, I.V. et al. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 447, 447–452 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, H.M. et al. Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair. EMBO J. 27, 2896–2906 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang, W. et al. Friedreich's ataxia (GAA)n*(TTC)n repeats strongly stimulate mitotic crossovers in Saccharomyces cerevisae. PLoS Genet. 7, e1001270 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Raghavan, S.C. & Lieber, M.R. DNA structures at chromosomal translocation sites. Bioessays 28, 480–494 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Glazkov, M.V. Loop organization of eukaryotic chromosomes and triple-stranded DNA structures. Mol. Biol. (Mosk.) 45, 294–306 (2011).

    Article  CAS  Google Scholar 

  46. Vetcher, A.A. et al. Sticky DNA, a long GAA.GAA.TTC triplex that is formed intramolecularly, in the sequence of intron 1 of the frataxin gene. J. Biol. Chem. 277, 39217–39227 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Sinha, N.K., Morris, C.F. & Alberts, B.M. Efficient in vitro replication of double-stranded DNA templates by a purified T4 bacteriophage replication system. J. Biol. Chem. 255, 4290–4293 (1980).

    CAS  PubMed  Google Scholar 

  48. Ohshima, K., Montermini, L., Wells, R.D. & Pandolfo, M. Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J. Biol. Chem. 273, 14588–14595 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Ziegler, K., Bui, T., Frisque, R.J., Grandinetti, A. & Nerurkar, V.R. A rapid in vitro polyomavirus DNA replication assay. J. Virol. Methods 122, 123–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Brewer, B.J. & Fangman, W.L. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51, 463–471 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Pandolfo (Campus ERASME, Université Libre de Bruxelles, Brussels, Belgium) for providing plasmids and L. Pelkmans (Institute of Molecular Life Science, University of Zürich, Zürich, Switzerland) for the SV40 strain. We thank also the Center for Microscopy and Image Analysis of the University of Zürich for technical assistance with EM. We thank J. Jiricny for critical reading of the manuscript. We are grateful to S. Mirkin, V. Zakian and all members of the Lopes lab for helpful discussions and valuable input on this project. This work was supported by the Swiss National Science Foundation grants PP0033-114922 and PP00P3-135292 to M.L.

Author information

Authors and Affiliations

Authors

Contributions

C.F. established and optimized the plasmid-based system used in this study and performed the 2D-gel and EM experiments. J.O. performed the 2D gel in Figure 1b. R.H. contributed to the RAD51-depletion experiment and performed the western blot. M.L. planned and supervised the project and wrote the paper.

Corresponding author

Correspondence to Massimo Lopes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 2034 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Follonier, C., Oehler, J., Herrador, R. et al. Friedreich's ataxia–associated GAA repeats induce replication-fork reversal and unusual molecular junctions. Nat Struct Mol Biol 20, 486–494 (2013). https://doi.org/10.1038/nsmb.2520

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2520

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing