Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HLA-DO acts as a substrate mimic to inhibit HLA-DM by a competitive mechanism

Abstract

Mammalian class II major histocompatibility (MHCII) proteins bind peptide antigens in endosomal compartments of antigen-presenting cells. The nonclassical MHCII protein HLA-DM chaperones peptide-free MHCII, protecting it against inactivation, and catalyzes peptide exchange on loaded MHCII. Another nonclassical MHCII protein, HLA-DO, binds HLA-DM and influences the repertoire of peptides presented by MHCII proteins. However, the mechanism by which HLA-DO functions is unclear. Here we have used X-ray crystallography, enzyme kinetics and mutagenesis approaches to investigate human HLA-DO structure and function. In complex with HLA-DM, HLA-DO adopts a classical MHCII structure, with alterations near the α subunit's 310 helix. HLA-DO binds to HLA-DM at the same sites implicated in MHCII interaction, and kinetic analysis showed that HLA-DO acts as a competitive inhibitor. These results show that HLA-DO inhibits HLA-DM function by acting as a substrate mimic, and the findings also limit the possible functional roles for HLA-DO in antigen presentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HLA-DO binds to HLA-DM and inhibits DM-catalyzed peptide binding and release.
Figure 2: Structure of the DO–DM complex.
Figure 3: The HLA-DO structure is very similar to conventional MHCII proteins, but with differences in the α subunit's 310 helix and adjacent extended strand.
Figure 4: Mutations that alter DM-MHCII interaction map to the DO–DM interface.
Figure 5: DM mutations at the DO interface have similar effects on interactions with DR and DO.
Figure 6: Kinetic analysis of DO inhibition of DM-catalyzed peptide exchange.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Denzin, L.K. & Cresswell, P. HLA-DM induces CLIP dissociation from MHC class II αβ dimers and facilitates peptide loading. Cell 82, 155–165 (1995).

    Article  CAS  Google Scholar 

  2. Sloan, V.S. et al. Mediation by HLA-DM of dissociation of peptides from HLA-DR. Nature 375, 802–806 (1995).

    Article  CAS  Google Scholar 

  3. Ghosh, P., Amaya, M., Mellins, E. & Wiley, D.C. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 378, 457–462 (1995).

    Article  CAS  Google Scholar 

  4. Morris, P. et al. An essential role for HLA-DM in antigen presentation by class II major histocompatibility molecules. Nature 368, 551–554 (1994).

    Article  CAS  Google Scholar 

  5. Riberdy, J.M., Newcomb, J.R., Surman, M.J., Barbosa, J.A. & Cresswell, P. HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides. Nature 360, 474–477 (1992).

    Article  CAS  Google Scholar 

  6. Anders, A.K. et al. HLA-DM captures partially empty HLA-DR molecules for catalyzed removal of peptide. Nat. Immunol. 12, 54–61 (2011).

    Article  CAS  Google Scholar 

  7. Ferrante, A. & Gorski, J. Cutting edge: HLA-DM-mediated peptide exchange functions normally on MHC class II-peptide complexes that have been weakened by elimination of a conserved hydrogen bond. J. Immunol. 184, 1153–1158 (2010).

    Article  CAS  Google Scholar 

  8. Narayan, K. et al. HLA-DM targets the hydrogen bond between the histidine at position β81 and peptide to dissociate HLA-DR-peptide complexes. Nat. Immunol. 8, 92–100 (2007).

    Article  CAS  Google Scholar 

  9. Painter, C. et al. Conformational lability in the class II MHC 3-10 helix and adjacent extended strand dictate HLA-DM susceptibility and peptide exchange. Proc. Natl. Acad. Sci. USA 108, 19329–19334 (2011).

    Article  CAS  Google Scholar 

  10. Zhou, Z., Callaway, K.A., Weber, D.A. & Jensen, P.E. Cutting edge: HLA-DM functions through a mechanism that does not require specific conserved hydrogen bonds in class II MHC-peptide complexes. J. Immunol. 183, 4187–4191 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Denzin, L.K., Hammond, C. & Cresswell, P. HLA-DM interactions with intermediates in HLA-DR maturation and a role for HLA-DM in stabilizing empty HLA-DR molecules. J. Exp. Med. 184, 2153–2165 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Kropshofer, H., Arndt, S.O., Moldenhauer, G., Hammerling, G.J. & Vogt, A.B. HLA-DM acts as a molecular chaperone and rescues empty HLA-DR molecules at lysosomal pH. Immunity 6, 293–302 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Weber, D.A., Evavold, B.D. & Jensen, P.E. Enhanced dissociation of HLA-DR-bound peptides in the presence of HLA-DM. Science 274, 618–620 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Tonnelle, C., DeMars, R. & Long, E.O. DOβ: a new β chain gene in HLA-D with a distinct regulation of expression. EMBO J. 4, 2839–2847 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Douek, D.C. & Altmann, D.M. T-cell apoptosis and differential human leucocyte antigen class II expression in human thymus. Immunology 99, 249–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Hornell, T.M. et al. Human dendritic cell expression of HLA-DO is subset specific and regulated by maturation. J. Immunol. 176, 3536–3547 (2006).

    Article  CAS  Google Scholar 

  17. Karlsson, L., Surh, C.D., Sprent, J. & Peterson, P.A. A novel class II MHC molecule with unusual tissue distribution. Nature 351, 485–488 (1991).

    Article  CAS  Google Scholar 

  18. Chen, X. et al. Regulated expression of human histocompatibility leukocyte antigen (HLA)-DO during antigen-dependent and antigen-independent phases of B cell development. J. Exp. Med. 195, 1053–1062 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Glazier, K.S. et al. Germinal center B cells regulate their capability to present antigen by modulation of HLA-DO. J. Exp. Med. 195, 1063–1069 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, X., Reed-Loisel, L.M., Karlsson, L. & Jensen, P.E. H2-O expression in primary dendritic cells. J. Immunol. 176, 3548–3556 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Denzin, L.K., Fallas, J.L., Prendes, M. & Yi, W. Right place, right time, right peptide: DO keeps DM focused. Immunol. Rev. 207, 279–292 (2005).

    Article  CAS  Google Scholar 

  22. Jensen, P.E. Antigen processing: HLA-DO—a hitchhiking inhibitor of HLA-DM. Curr. Biol. 8, R128–R131 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Yi, W. et al. Targeted regulation of self-peptide presentation prevents type I diabetes in mice without disrupting general immunocompetence. J. Clin. Invest. 120, 1324–1336 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Perraudeau, M. et al. Altered major histocompatibility complex class II peptide loading in H2-O-deficient mice. Eur. J. Immunol. 30, 2871–2880 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. van Ham, S.M. et al. HLA-DO is a negative modulator of HLA-DM-mediated MHC class II peptide loading. Curr. Biol. 7, 950–957 (1997).

    Article  CAS  Google Scholar 

  26. Alfonso, C. et al. Analysis of H2-O influence on antigen presentation by B cells. J. Immunol. 171, 2331–2337 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Alfonso, C., Williams, G.S. & Karlsson, L. H2-O influence on antigen presentation in H2-E-expressing mice. Eur. J. Immunol. 33, 2014–2021 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Liljedahl, M. et al. Altered antigen presentation in mice lacking H2-O. Immunity 8, 233–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Denzin, L.K., Sant'Angelo, D.B., Hammond, C., Surman, M.J. & Cresswell, P. Negative regulation by HLA-DO of MHC class II-restricted antigen processing. Science 278, 106–109 (1997).

    Article  CAS  Google Scholar 

  30. Liljedahl, M. et al. HLA-DO is a lysosomal resident which requires association with HLA-DM for efficient intracellular transport. EMBO J. 15, 4817–4824 (1996).

    Article  PubMed  Google Scholar 

  31. Yoon, T. et al. Mapping the DO/DM complex by FRET and mutagenesis. Proc. Natl. Acad. Sci. USA 109, 11276–11281 (2012).

    Article  CAS  Google Scholar 

  32. Fallas, J.L. et al. Ectopic expression of HLA-DO in mouse dendritic cells diminishes MHC class II antigen presentation. J. Immunol. 173, 1549–1560 (2004).

    Article  CAS  Google Scholar 

  33. Thibodeau, J. et al. Conserved structural features between HLA-DOβ and -DRβ. Mol. Immunol. 35, 885–893 (1998).

    Article  CAS  Google Scholar 

  34. Kropshofer, H. et al. A role for HLA-DO as a co-chaperone of HLA-DM in peptide loading of MHC class II molecules. EMBO J. 17, 2971–2981 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Deshaies, F. et al. A point mutation in the groove of HLA-DO allows egress from the endoplasmic reticulum independent of HLA-DM. Proc. Natl. Acad. Sci. USA 102, 6443–6448 (2005).

    Article  CAS  Google Scholar 

  36. Fremont, D.H., Crawford, F., Marrack, P., Hendrickson, W.A. & Kappler, J. Crystal structure of mouse H2-M. Immunity 9, 385–393 (1998).

    Article  CAS  Google Scholar 

  37. Mosyak, L., Zaller, D.M. & Wiley, D.C. The structure of HLA-DM, the peptide exchange catalyst that loads antigen onto class II MHC molecules during antigen presentation. Immunity 9, 377–383 (1998).

    Article  CAS  Google Scholar 

  38. Nicholson, M.J. et al. Small molecules that enhance the catalytic efficiency of HLA-DM. J. Immunol. 176, 4208–4220 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Pashine, A. et al. Interaction of HLA-DR with an acidic face of HLA-DM disrupts sequence-dependent interactions with peptides. Immunity 19, 183–192 (2003).

    Article  CAS  Google Scholar 

  40. Doebele, R.C., Busch, R., Scott, H.M., Pashine, A. & Mellins, E.D. Determination of the HLA-DM interaction site on HLA-DR molecules. Immunity 13, 517–527 (2000).

    Article  CAS  Google Scholar 

  41. Vogt, A.B., Kropshofer, H., Moldenhauer, G. & Hammerling, G.J. Kinetic analysis of peptide loading onto HLA-DR molecules mediated by HLA-DM. Proc. Natl. Acad. Sci. USA 93, 9724–9729 (1996).

    Article  CAS  Google Scholar 

  42. Copeland, R. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis 2nd edn., Ch. 9 (Wiley-VCH, 2000).

  43. Williams, J.W. & Morrison, J.F. The kinetics of reversible tight-binding inhibition. Methods Enzymol. 63, 437–467 (1979).

    Article  CAS  Google Scholar 

  44. Zwart, W. et al. Spatial separation of HLA-DM/HLA-DR interactions within MIIC and phagosome-induced immune escape. Immunity 22, 221–233 (2005).

    Article  CAS  Google Scholar 

  45. van Ham, M. et al. Modulation of the major histocompatibility complex class II-associated peptide repertoire by human histocompatibility leukocyte antigen (HLA)-DO. J. Exp. Med. 191, 1127–1136 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. van Lith, M. et al. Regulation of MHC class II antigen presentation by sorting of recycling HLA-DM/DO and class II within the multivesicular body. J. Immunol. 167, 884–892 (2001).

    Article  CAS  Google Scholar 

  47. Xiu, F. et al. Cutting edge: HLA-DO impairs the incorporation of HLA-DM into exosomes. J. Immunol. 187, 1547–1551 (2011).

    Article  CAS  Google Scholar 

  48. Gondré-Lewis, T.A., Moquin, A.E. & Drake, J.R. Prolonged antigen persistence within nonterminal late endocytic compartments of antigen-specific B lymphocytes. J. Immunol. 166, 6657–6664 (2001).

    Article  Google Scholar 

  49. Sant, A.J., Braunstein, N.S. & Germain, R.N. Predominant role of amino-terminal sequences in dictating efficiency of class II major histocompatibility complex αβ dimer expression. Proc. Natl. Acad. Sci. USA 84, 8065–8069 (1987).

    Article  CAS  Google Scholar 

  50. Sant, A.J., Hendrix, L.R., Coligan, J.E., Maloy, W.L. & Germain, R.N. Defective intracellular transport as a common mechanism limiting expression of inappropriately paired class II major histocompatibility complex α/β chains. J. Exp. Med. 174, 799–808 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Rinderknecht, C.H. et al. DM influences the abundance of major histocompatibility complex class II alleles with low affinity for class II-associated invariant chain peptides via multiple mechanisms. Immunology 131, 18–32 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Ferrante, A., Anderson, M.W., Klug, C.S. & Gorski, J. HLA-DM mediates epitope selection by a “compare-exchange” mechanism when a potential peptide pool is available. PLoS ONE 3, e3722 (2008).

    Article  PubMed  Google Scholar 

  53. Painter, C.A., Cruz, A., Lopez, G.E., Stern, L.J. & Zavala-Ruiz, Z. Model for the peptide-free conformation of class II MHC proteins. PLoS ONE 3, e2403 (2008).

    Article  PubMed  Google Scholar 

  54. Weiss, M.S. Global indicators of X-ray data quality. J. Appl. Crystallogr. 34, 130–135 (2001).

    Article  CAS  Google Scholar 

  55. Busch, R., Doebele, R.C., von Scheven, E., Fahrni, J. & Mellins, E.D. Aberrant intermolecular disulfide bonding in a mutant HLA-DM molecule: implications for assembly, maturation, and function. J. Immunol. 160, 734–743 (1998).

    CAS  PubMed  Google Scholar 

  56. Marsh, S.G.E. et al. Nomenclature for factors of the HLA system. Tissue Antigens 75, 291–455 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Frayser, M., Sato, A.K., Xu, L. & Stern, L.J. Empty and peptide-loaded class II major histocompatibility complex proteins produced by expression in Escherichia coli and folding in vitro. Protein Expr. Purif. 15, 105–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Joshi, R.V., Zarutskie, J.A. & Stern, L.J. A three-step kinetic mechanism for peptide binding to MHC class II proteins. Biochemistry 39, 3751–3762 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Zarutskie, J.A. et al. The kinetic basis of peptide exchange catalysis by HLA-DM. Proc. Natl. Acad. Sci. USA 98, 12450–12455 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Otwinoski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  Google Scholar 

  61. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  63. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Sheldrick, G.M. & Schneider, T.R. SHELXL: high-resolution refinement. Methods Enzymol. 277, 319–343 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  67. Karplus, P.A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Karlsson (Johnson & Johnson) for S2 cells expressing DM and DO-Fc, J. Thibodeau (Université de Montréal) for plasmid pRmHa3 encoding sDOα and sDOβ cDNAs, L. Lee and L. Lu for assistance with insect cell culture and protein purification, H. Robinson and A. Heroux for assistance with crystallographic data collection, and E. Stratikos for helpful comments. Data for this study were measured at beamlines X25 and X29 of the US National Synchrotron Light Source, with support from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy and from the National Center for Research Resources (NCRR) of the US National Institutes of Health (NIH). This work was supported by NIH grants AI-38996 (L.J.S.), AI-48833 (L.J.S.), T32 AI07349 (S.E.M.), F32 AI072984 (S.E.M.), AI-095813 (E.D.M.) and AI-075253 (E.D.M.), by NIH/NCRR Clinical and Translational Science Award UL1 RR025744 at Stanford University, and by the Lucile Packard Foundation for Children's Health (E.D.M.).

Author information

Authors and Affiliations

Authors

Contributions

S.E.M. prepared and crystallized the DO–DM complex; S.E.M., A.I.G. and L.J.S. interpreted diffraction data; A.I.G. built the structural model; S.E.M. performed kinetics experiments; T.Y., W.J. and A.I.G. analyzed mutant proteins; A.I.G., S.E.M., T.Y., C.A.P., W.J., E.D.M. and L.J.S. designed experiments and analyzed data; A.I.G., S.E.M., C.A.P., W.J., E.D.M. and L.J.S. wrote the manuscript.

Corresponding author

Correspondence to Lawrence J Stern.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Table 1 and Supplementary Figures 1–4 (PDF 3058 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guce, A., Mortimer, S., Yoon, T. et al. HLA-DO acts as a substrate mimic to inhibit HLA-DM by a competitive mechanism. Nat Struct Mol Biol 20, 90–98 (2013). https://doi.org/10.1038/nsmb.2460

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2460

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing