Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Multilayered chromatin analysis reveals E2f, Smad and Zfx as transcriptional regulators of histones

Abstract

Histones, the building blocks of eukaryotic chromatin, are essential for genome packaging, function and regulation. However, little is known about their transcriptional regulation. Here we conducted a comprehensive computational analysis, based on chromatin immunoprecipitation–sequencing and −microarray analysis (ChIP-seq and ChIP-chip) data of over 50 transcription factors and histone modifications in mouse embryonic stem cells. Enrichment scores supported by gene expression data from gene knockout studies identified E2f1 and E2f4 as master regulators of histone genes, CTCF and Zfx as repressors of core and linker histones, respectively, and Smad1, Smad2, YY1 and Ep300 as restricted or cell type–specific regulators. We propose that histone gene regulation is substantially more complex than previously thought, and that a combination of factors orchestrate histone gene regulation, from strict synchronization with S phase to targeted regulation of specific histone subtypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multifactorial regulation of histone genes.
Figure 2: Enrichment analysis of multiple TFs.
Figure 3: E2f1 and E2f4 are enriched in all histone subtypes.
Figure 4: Histone genes are a main target of Smad proteins.
Figure 5: Zfx negatively regulates linker histones.
Figure 6: CTCF and YY1 binding to histone genes.
Figure 7: Pair-wise distance between TF binding signatures reveals distinct transcriptional regulation for different histones.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Zhao, J. Coordination of DNA synthesis and histone gene expression during normal cell cycle progression and after DNA damage. Cell Cycle 3, 695–697 (2004).

    Article  CAS  Google Scholar 

  2. Meeks-Wagner, D. & Hartwell, L.H. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell 44, 43–52 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Ye, X. et al. Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol. Cell 11, 341–351 (2003).

    Article  CAS  Google Scholar 

  4. Marzluff, W.F. & Duronio, R.J. Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences. Curr. Opin. Cell Biol. 14, 692–699 (2002).

    Article  CAS  Google Scholar 

  5. Osley, M.A. The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 60, 827–861 (1991).

    Article  CAS  Google Scholar 

  6. Jaeger, S., Barends, S., Giege, R., Eriani, G. & Martin, F. Expression of metazoan replication-dependent histone genes. Biochimie 87, 827–834 (2005).

    Article  CAS  Google Scholar 

  7. DeLisle, A.J., Graves, R.A., Marzluff, W.F. & Johnson, L.F. Regulation of histone mRNA production and stability in serum-stimulated mouse 3T6 fibroblasts. Mol. Cell Biol. 3, 1920–1929 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Heintz, N., Sive, H.L. & Roeder, R.G. Regulation of human histone gene expression: kinetics of accumulation and changes in the rate of synthesis and in the half-lives of individual histone mRNAs during the HeLa cell cycle. Mol. Cell Biol. 3, 539–550 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Segil, N., Roberts, S.B. & Heintz, N. Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity. Science 254, 1814–1816 (1991).

    Article  CAS  Google Scholar 

  10. Fletcher, C., Heintz, N. & Roeder, R.G. Purification and characterization of OTF-1, a transcription factor regulating cell cycle expression of a human histone H2b gene. Cell 51, 773–781 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Mitra, P. et al. Identification of HiNF-P, a key activator of cell cycle-controlled histone H4 genes at the onset of S phase. Mol. Cell Biol. 23, 8110–8123 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Zhao, J. et al. NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev. 14, 2283–2297 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Artishevsky, A., Wooden, S., Sharma, A., Resendez, E. Jr. & Lee, A.S. Cell-cycle regulatory sequences in a hamster histone promoter and their interactions with cellular factors. Nature 328, 823–827 (1987).

    Article  CAS  Google Scholar 

  14. Wu, F. & Lee, A.S. Identification of AP-2 as an interactive target of Rb and a regulator of the G1/S control element of the hamster histone H3.2 promoter. Nucleic Acids Res. 26, 4837–4845 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, F. & Lee, A.S. YY1 as a regulator of replication-dependent hamster histone H3.2 promoter and an interactive partner of AP-2. J. Biol. Chem. 276, 28–34 (2001).

    Article  CAS  Google Scholar 

  16. Last, T.J., van Wijnen, A.J., Birnbaum, M.J., Stein, G.S. & Stein, J.L. Multiple interactions of the transcription factor YY1 with human histone H4 gene regulatory elements. J. Cell. Biochem. 72, 507–516 (1999).

    Article  CAS  Google Scholar 

  17. La Bella, F., Gallinari, P., McKinney, J. & Heintz, N. Histone H1 subtype-specific consensus elements mediate cell cycle-regulated transcription in vitro. Genes Dev. 3, 1982–1990 (1989).

    Article  CAS  Google Scholar 

  18. Yagi, H. et al. Regulation of the mouse histone H2A.X gene promoter by the transcription factor E2F and CCAAT binding protein. J. Biol. Chem. 270, 18759–18765 (1995).

    Article  CAS  Google Scholar 

  19. Nelson, D.M. et al. Coupling of DNA synthesis and histone synthesis in S phase independent of cyclin/cdk2 activity. Mol. Cell Biol. 22, 7459–7472 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Mitra, P., Vaughan, P.S., Stein, J.L., Stein, G.S. & van Wijnen, A.J. Purification and functional analysis of a novel leucine-zipper/nucleotide-fold protein, BZAP45, stimulating cell cycle regulated histone H4 gene transcription. Biochemistry 40, 10693–10699 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Isogai, Y., Keles, S., Prestel, M., Hochheimer, A. & Tjian, R. Transcription of histone gene cluster by differential core-promoter factors. Genes Dev. 21, 2936–2949 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. He, H., Yu, F.X., Sun, C. & Luo, Y. CBP/p300 and SIRT1 are involved in transcriptional regulation of S-phase specific histone genes. PLoS ONE 6, e22088 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. DeRan, M., Pulvino, M., Greene, E., Su, C. & Zhao, J. Transcriptional activation of histone genes requires NPAT-dependent recruitment of TRRAP-Tip60 complex to histone promoters during the G1/S phase transition. Mol. Cell Biol. 28, 435–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Marti, A., Wirbelauer, C., Scheffner, M. & Krek, W. Interaction between ubiquitin-protein ligase SCFSKP2 and E2F–1 underlies the regulation of E2F–1 degradation. Nat. Cell Biol. 1, 14–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Oswald, F., Dobner, T. & Lipp, M. The E2F transcription factor activates a replication-dependent human H2A gene in early S phase of the cell cycle. Mol. Cell Biol. 16, 1889–1895 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Rabinovich, A., Jin, V.X., Rabinovich, R., Xu, X. & Farnham, P.J. E2F in vivo binding specificity: comparison of consensus versus nonconsensus binding sites. Genome Res. 18, 1763–1777 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Seyedin, S.M., Cole, R.D. & Kistler, W.S. H1 histones from mammalian testes. The widespread occurrence of H1t. Exp. Cell Res. 136, 399–405 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, L., Duff, M.O., Graveley, B.R., Carmichael, G.G. & Chen, L.L. Genomewide characterization of non-polyadenylated RNAs. Genome Biol. 12, R16 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Levine, B.J., Liu, T.J., Marzluff, W.F. & Skoultchi, A.I. Differential expression of individual members of the histone multigene family due to sequences in the 5′ and 3′ regions of the genes. Mol. Cell Biol. 8, 1887–1895 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Fan, Y. et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123, 1199–1212 (2005).

    Article  CAS  Google Scholar 

  31. Stead, E. et al. Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 21, 8320–8333 (2002).

    Article  CAS  Google Scholar 

  32. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  Google Scholar 

  33. van Wijnen, A.J. et al. CDP/cut is the DNA-binding subunit of histone gene transcription factor HiNF-D: a mechanism for gene regulation at the G1/S phase cell cycle transition point independent of transcription factor E2F. Proc. Natl. Acad. Sci. USA 93, 11516–11521 (1996).

    Article  CAS  Google Scholar 

  34. Bieda, M., Xu, X., Singer, M.A., Green, R. & Farnham, P.J. Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res. 16, 595–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Antonio Giordano, A.G. & Soprano, K.J. Cell Cycle Inhibitors in Cancer Therapy: Current Strategies, (Humana Press inc., Totowa, New Jersey, 2003).

  36. Cao, A.R. et al. Genome-wide analysis of transcription factor E2F1 mutant proteins reveals that N- and C-terminal protein interaction domains do not participate in targeting E2F1 to the human genome. J. Biol. Chem. 286, 11985–11996 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Heckmann, S. et al. The E2F transcription factor family regulates CENH3 expression in Arabidopsis thaliana. Plant J. 68, 646–656 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Holmes, W.F. et al. Coordinate control and selective expression of the full complement of replication-dependent histone H4 genes in normal and cancer cells. J. Biol. Chem. 280, 37400–37407 (2005).

    Article  CAS  Google Scholar 

  39. Andrechek, E.R., Mori, S., Rempel, R.E., Chang, J.T. & Nevins, J.R. Patterns of cell signaling pathway activation that characterize mammary development. Development 135, 2403–2413 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Xu, X. et al. A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res. 17, 1550–1561 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Gaubatz, S. et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol. Cell 6, 729–735 (2000).

    Article  CAS  Google Scholar 

  42. Takimoto, T. et al. Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. J. Immunol. 185, 842–855 (2010).

    Article  CAS  Google Scholar 

  43. Galvin, K.E., Travis, E.D., Yee, D., Magnuson, T. & Vivian, J.L. Nodal signaling regulates the bone morphogenic protein pluripotency pathway in mouse embryonic stem cells. J. Biol. Chem. 285, 19747–19756 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Galan-Caridad, J.M. et al. Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell 129, 345–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, J.S. et al. Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300. Genes Dev. 9, 1188–1198 (1995).

    Article  CAS  Google Scholar 

  46. Schlisio, S., Halperin, T., Vidal, M. & Nevins, J.R. Interaction of YY1 with E2Fs, mediated by RYBP, provides a mechanism for specificity of E2F function. EMBO J. 21, 5775–5786 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Marzluff, W.F., Wagner, E.J. & Duronio, R.J. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9, 843–854 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Heldin, C.H., Miyazono, K. & ten Dijke, P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471 (1997).

    Article  CAS  Google Scholar 

  49. Ten Dijke, P., Miyazono, K. & Heldin, C.H. Signaling inputs converge on nuclear effectors in TGF-beta signaling. Trends Biochem. Sci. 25, 64–70 (2000).

    Article  CAS  Google Scholar 

  50. Pucéat, M. TGFbeta in the differentiation of embryonic stem cells. Cardiovasc. Res. 74, 256–261 (2007).

    Article  PubMed  Google Scholar 

  51. Wu, H. & Zhang, Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 25, 2436–2452 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Kagey, M.H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, H.Z., Tsai, S.Y. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9, 785–797 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Nikpour, P., Emadi-Baygi, M., Mohammad-Hashem, F., Maracy, M.R. & Haghjooy-Javanmard, S. Differential expression of ZFX gene in gastric cancer. J. Biosci. 37, 85–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Nicholson, S., Whitehouse, H., Naidoo, K. & Byers, R.J. Yin Yang 1 in human cancer. Crit. Rev. Oncog. 16, 245–260 (2011).

    Article  PubMed  Google Scholar 

  56. Fiorentino, F.P. & Giordano, A. The tumor suppressor role of CTCF. J. Cell Physiol. 227, 479–492 (2012).

    Article  CAS  Google Scholar 

  57. The ENCODE Project Consortium. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

  58. Chen, L., Wu, G. & Ji, H. hmChIP: a database and web server for exploring publicly available human and mouse ChIP-seq and ChIP-chip data. Bioinformatics 27, 1447–1448 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  Google Scholar 

  60. Sailaja, B.S., Takizawa, T. & Meshorer, E. Chromatin immunoprecipitation in mouse hippocampal cells and tissues. Methods Mol. Biol. 809, 353–364 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Carmel and Y. Aaronson for help with statistical analyses, and H. Margalit and O. Rando for critical comments. This work was supported by the Israel Science Foundation, the Abisch Frenkel Foundation, the Israel Cancer Research Foundation and the European Research Council (ERC-281781).

Author information

Authors and Affiliations

Authors

Contributions

D.G. and E.M. conceived the idea; D.G. and I.L. analyzed the data; B.S.S. and S.M. performed the experiments; D.G. and E.M. wrote the paper.

Corresponding author

Correspondence to Eran Meshorer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–4 (PDF 563 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokhman, D., Livyatan, I., Sailaja, B. et al. Multilayered chromatin analysis reveals E2f, Smad and Zfx as transcriptional regulators of histones. Nat Struct Mol Biol 20, 119–126 (2013). https://doi.org/10.1038/nsmb.2448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2448

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing