Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation


The removal of the mRNA 5′ cap structure by the decapping enzyme DCP2 leads to rapid 5′→3′ mRNA degradation by XRN1, suggesting that the two processes are coordinated, but the coupling mechanism is unknown. DCP2 associates with the decapping activators EDC4 and DCP1. Here we show that XRN1 directly interacts with EDC4 and DCP1 in human and Drosophila melanogaster cells, respectively. In D. melanogaster cells, this interaction is mediated by the DCP1 EVH1 domain and a DCP1-binding motif (DBM) in the XRN1 C-terminal region. The NMR structure of the DCP1 EVH1 domain bound to the DBM reveals that the peptide docks at a conserved aromatic cleft, which is used by EVH1 domains to recognize proline-rich ligands. Our findings reveal a role for XRN1 in decapping and provide a molecular basis for the coupling of decapping to 5′→3′ mRNA degradation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: XRN1 interacts with DCP1 in D. melanogaster cells.
Figure 2: The structure of the DCP1 EVH1 domain bound to the XRN1 DBM motif.
Figure 3: XRN1 interacts with EDC4 in human cells.
Figure 4: Mutagenesis of the D. melanogaster DCP1-XRN1 interaction interface.
Figure 5: XRN1 overexpression inhibits mRNA decapping.
Figure 6: The DCP1-XRN1 interaction is required for efficient decapping in vivo.

Accession codes

Primary accessions

Protein Data Bank


  1. 1

    Chen, C.Y. & Shyu, A.B. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip. Rev. RNA 2, 167–183 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Houseley, J., LaCava, J. & Tollervey, D. RNA-quality control by the exosome. Nat. Rev. Mol. Cell Biol. 7, 529–539 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Ling, S.H., Qamra, R. & Song, H. Structural and functional insights into eukaryotic mRNA decapping. Wiley Interdiscip Rev. RNA 2, 193–208 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Nissan, T., Rajyaguru, P., She, M., Song, H. & Parker, R. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol. Cell 39, 773–783 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Fenger-Grøn, M., Fillman, C., Norrild, B. & Lykke-Andersen, J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol. Cell 20, 905–915 (2005).

    Article  Google Scholar 

  6. 6

    Hsu, C.L. & Stevens, A. Yeast cells lacking 5′→3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 13, 4826–4835 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Muhlrad, D., Decker, C.J. & Parker, R. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′→3′ digestion of the transcript. Genes Dev. 8, 855–866 (1994).

    CAS  Article  Google Scholar 

  8. 8

    Bouveret, E., Rigaut, G., Shevchenko, A., Wilm, M. & Seraphin, B. A Sm-like protein complex that participates in mRNA degradation. EMBO J. 19, 1661–1671 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Ozgur, S., Chekulaeva, M. & Stoecklin, G. Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies. Mol. Cell. Biol. 30, 4308–4323 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Fromont-Racine, M. et al. Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 17, 95–110 (2000).

    CAS  Article  Google Scholar 

  11. 11

    Parker, R. & Sheth, U. P bodies and the control of mRNA translation and degradation. Mol. Cell 25, 635–646 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Ball, L.J., Jarchau, T., Oschkinat, H. & Walter, U. EVH1 domains: structure, function and interactions. FEBS Lett. 513, 45–52 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Peterson, F.C. & Volkman, B.F. Diversity of polyproline recognition by EVH1 domains. Front. Biosci. 14, 833–846 (2009).

    CAS  Article  Google Scholar 

  14. 14

    She, M. et al. Crystal structure of Dcp1p and its functional implications in mRNA decapping. Nat. Struct. Mol. Biol. 11, 249–256 (2004).

    CAS  Article  Google Scholar 

  15. 15

    She, M. et al. Structural basis of Dcp2 recognition and activation by Dcp1. Mol. Cell 29, 337–349 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Tritschler, F. et al. DCP1 forms asymmetric trimers to assemble into active mRNA decapping complexes in metazoa. Proc. Natl. Acad. Sci. USA 106, 21591–21596 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Fromm, S.A. et al. The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex. EMBO J. 31, 279–290 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Jinek, M., Coyle, S.M. & Doudna, J.A. Coupled 5′ nucleotide recognition and processivity in Xrn1-mediated mRNA decay. Mol. Cell 41, 600–608 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Chang, J.H., Xiang, S., Xiang, K., Manley, J.L. & Tong, L. Structural and biochemical studies of the 5′→3′ exoribonuclease Xrn1. Nat. Struct. Mol. Biol. 18, 270–276 (2011).

  20. 20

    Volkman, B.F., Prehoda, K.E., Scott, J.A., Peterson, F.C. & Lim, W.A. Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich Syndrome. Cell 111, 565–576 (2002).

    CAS  Article  Google Scholar 

  21. 21

    Prehoda, K.E., Lee, D.J. & Lim, W.A. Structure of the enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Cell 97, 471–480 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Fedorov, A.A., Fedorov, E., Gertler, F. & Almo, S.C. Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nat. Struct. Biol. 6, 661–665 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Carl, U.D. et al. Aromatic and basic residues within the EVH1 domain of VASP specify its interaction with proline-rich ligands. Curr. Biol. 9, 715–718 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Ball, L.J. et al. Dual epitope recognition by the VASP EVH1 domain modulates polyproline ligand specificity and binding affinity. EMBO J. 19, 4903–4914 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Beneken, J. et al. Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition. Neuron 26, 143–154 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Barzik, M. et al. The N-terminal domain of Homer/Vesl is a new class II EVH1 domain. J. Mol. Biol. 309, 155–169 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Yu, J.H., Yang, W.H., Gulick, T., Bloch, K.D. & Bloch, D.B. Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 11, 1795–1802 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Jinek, M. et al. The C-terminal region of Ge-1 presents conserved structural features required for P-body localization. RNA 14, 1991–1998 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Bloch, D.B., Nobre, R.A., Bernstein, G.A. & Yang, W.H. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay. Exp. Cell Res. 317, 2183–2199 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Eulalio, A. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. 21, 2558–2570 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Chekulaeva, M. et al. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 18, 1218–1226 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Xu, J., Yang, J.Y., Niu, Q.W. & Chua, N.H. Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18, 3386–3398 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Borja, M.S., Piotukh, K., Freund, C. & Gross, J.D. Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition. RNA 17, 278–290 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Davey, N.E. et al. Attributes of short linear motifs. Mol. Biosyst. 8, 268–281 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Deshmukh, M.V. et al. mRNA decapping is promoted by an RNA-binding channel in Dcp2. Mol. Cell 29, 324–336 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Floor, S.N., Borja, M.S. & Gross, J.D. Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan. Proc. Natl. Acad. Sci. USA 109, 2872–2877 (2012).

    CAS  Article  Google Scholar 

  38. 38

    Haas, G. et al. HPat provides a link between deadenylation and decapping in metazoa. J. Cell Biol. 189, 289–302 (2010).

    CAS  Article  Google Scholar 

  39. 39

    Braun, J.E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120–133 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Diebold, M.L., Fribourg, S., Koch, M., Metzger, T. & Romier, C. Deciphering correct strategies for multiprotein complex assembly by co-expression: application to complexes as large as the histone octamer. J. Struct. Biol. 175, 178–188 (2011).

    CAS  Article  Google Scholar 

  41. 41

    Diercks, T., Daniels, M. & Kaptein, R. Extended flip-back schemes for sensitivity enhancement in multidimensional HSQC-type out-and-back experiments. J. Biomol. NMR 33, 243–259 (2005).

    CAS  Article  Google Scholar 

  42. 42

    Carlomagno, T. et al. PLUSH TACSY: homonuclear planar TACSY with two-band selective shaped pulses applied to C(α),C′ transfer and C (β),C (aromatic) correlations. J. Biomol. NMR 8, 161–170 (1996).

    CAS  Article  Google Scholar 

  43. 43

    Diercks, T., Coles, M. & Kessler, H. An efficient strategy for assignment of cross-peaks in 3D heteronuclear NOESY experiments. J. Biomol. NMR 15, 177–180 (1999).

    CAS  Article  Google Scholar 

  44. 44

    Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    CAS  Article  Google Scholar 

  45. 45

    Ginzinger, S.W. & Coles, M. SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database. J. Biomol. NMR 43, 179–185 (2009).

    CAS  Article  Google Scholar 

  46. 46

    Truffault, V. et al. The solution structure of the N-terminal domain of riboflavin synthase. J. Mol. Biol. 309, 949–960 (2001).

    CAS  Article  Google Scholar 

  47. 47

    Schwieters, C.D., Kuszewski, J.J. & Clore, G.M. Using Xplor-NIH for NMR molecular structure determination. Prog. Nucl. Magn. Reson. Spectrosc. 48, 47–62 (2006).

    CAS  Article  Google Scholar 

  48. 48

    Schwieters, C.D., Kuszewski, J.J., Tjandra, N. & Clore, G.M. Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    CAS  Article  Google Scholar 

  49. 49

    Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  Article  Google Scholar 

  50. 50

    Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

Download references


We are grateful to S.F. Newbury (Brighton and Sussex Medical School, University of Sussex, Brighton, UK) for the kind gift of D. melanogaster XRN1 complementary DNA (cDNA) and XRN1 antibodies. This study was supported by the Max Planck Society and grants from the Deutsche Forschungsgemeinschaft (DFG, FOR855 to E.I. and the Gottfried Wilhelm Leibniz Program to E.I.).

Author information




E.I. conceived the project. J.E.B. and E.H. carried out the immunoprecipitations and functional assays in S2 cells. J.E.B. and A.B. purified the complex. C.-T.C. carried out immunoprecipitations in human cells. G.H. was involved in an earlier phase of the project, cloned XRN1 and DCP1 fragments and performed preliminary immunoprecipitations and functional assays in S2 cells. V.T. collected and processed the NMR data. V.T. and M.C. solved the structure and built the model. J.E.B., V.T., A.B., M.C., O.W. and E.I. analyzed the structure and wrote the manuscript.

Corresponding authors

Correspondence to Vincent Truffault or Elisa Izaurralde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 15006 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Braun, J., Truffault, V., Boland, A. et al. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation. Nat Struct Mol Biol 19, 1324–1331 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing