Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATPase-dependent role of the atypical kinase Rio2 on the evolving pre-40S ribosomal subunit

This article has been updated

Abstract

Ribosome synthesis involves dynamic association of ribosome-biogenesis factors with evolving preribosomal particles. Rio2 is an atypical protein kinase required for pre-40S subunit maturation. We report the crystal structure of eukaryotic Rio2–ATP–Mg2+ complex. The active site contains ADP-Mg2+ and a phosphoaspartate intermediate typically found in Na+, K+ and Ca2+ ATPases but not protein kinases. Consistent with this finding, ctRio2 exhibits a robust ATPase activity in vitro. In vivo, Rio2 docks on the ribosome, with its active site occluded and its flexible loop positioned to interact with the pre-40S subunit. Moreover, Rio2 catalytic activity is required for its dissociation from the ribosome, a necessary step in pre-40S maturation. We propose that phosphoryl transfer from ATP to Asp257 in Rio2's active site and subsequent hydrolysis of the aspartylphosphate could be a trigger to power late cytoplasmic 40S subunit biogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the ctRio2 kinase.
Figure 2: ctRio2 has ATPase activity in vitro.
Figure 3: Positioning of Rio2 kinase into the cryo-EM density map of the yeast pre-40S subunit.
Figure 4: Rio2's catalytic activity is required for 40S subunit biogenesis.
Figure 5: Rio2's kinase activity is required for its own recycling from the pre-40S subunit.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Electron Microscopy Data Bank

Protein Data Bank

Change history

  • 05 December 2012

    In the version of this supplementary file originally posted online, the labels for the chemicals shown in Supplementary Figure 5d contained errors. The errors have been corrected in this file 5 December 2012.

References

  1. Geerlings, T.H., Faber, A.W., Bister, M.D., Vos, J.C. & Raue, H.A. Rio2p, an evolutionarily conserved, low abundant protein kinase essential for processing of 20 S pre-rRNA in Saccharomyces cerevisiae. J. Biol. Chem. 278, 22537–22545 (2003).

    Article  CAS  Google Scholar 

  2. Vanrobays, E., Gelugne, J.P., Gleizes, P.E. & Caizergues-Ferrer, M. Late cytoplasmic maturation of the small ribosomal subunit requires RIO proteins in Saccharomyces cerevisiae. Mol. Cell Biol. 23, 2083–2095 (2003).

    Article  CAS  Google Scholar 

  3. Schäfer, T., Strauss, D., Petfalski, E., Tollervey, D. & Hurt, E. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J. 22, 1370–1380 (2003).

    Article  Google Scholar 

  4. Henras, A.K. et al. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol. Life Sci. 65, 2334–2359 (2008).

    Article  CAS  Google Scholar 

  5. Fromont-Racine, M., Senger, B., Saveanu, C. & Fasiolo, F. Ribosome assembly in eukaryotes. Gene 313, 17–42 (2003).

    Article  CAS  Google Scholar 

  6. Zemp, I. et al. Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J. Cell Biol. 185, 1167–1180 (2009).

    Article  CAS  Google Scholar 

  7. Granneman, S., Petfalski, E., Swiatkowska, A. & Tollervey, D. Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA-protein cross-linking. EMBO J. 29, 2026–2036 (2010).

    Article  CAS  Google Scholar 

  8. Strunk, B.S. et al. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science 333, 1449–1453 (2011).

    Article  CAS  Google Scholar 

  9. LaRonde-LeBlanc, N., Guszczynski, T., Copeland, T. & Wlodawer, A. Autophosphorylation of Archaeoglobus fulgidus Rio2 and crystal structures of its nucleotide-metal ion complexes. FEBS J. 272, 2800–2810 (2005).

    Article  CAS  Google Scholar 

  10. LaRonde-LeBlanc, N. & Wlodawer, A. Crystal structure of A. fulgidus Rio2 defines a new family of serine protein kinases. Structure 12, 1585–1594 (2004).

    Article  CAS  Google Scholar 

  11. Amlacher, S. et al. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146, 277–289 (2011).

    Article  CAS  Google Scholar 

  12. Post, R.L. & Kume, S. Evidence for an aspartyl phosphate residue at the active site of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 248, 6993–7000 (1973).

    CAS  PubMed  Google Scholar 

  13. Kühlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 5, 282–295 (2004).

    Article  Google Scholar 

  14. Hanks, S.K., Quinn, A.M. & Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52 (1988).

    Article  CAS  Google Scholar 

  15. Taylor, S.S. & Kornev, A.P. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem. Sci. 36, 65–77 (2011).

    Article  CAS  Google Scholar 

  16. Sanders, D.A., Gillece-Castro, B.L., Stock, A.M., Burlingame, A.L. & Koshland, D.E. Jr. Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J. Biol. Chem. 264, 21770–21778 (1989).

    CAS  PubMed  Google Scholar 

  17. Collet, J.F., Stroobant, V., Pirard, M., Delpierre, G. & Van Schaftingen, E. A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J. Biol. Chem. 273, 14107–14112 (1998).

    Article  CAS  Google Scholar 

  18. Zheng, J. et al. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry 32, 2154–2161 (1993).

    Article  CAS  Google Scholar 

  19. Parang, K. & Cole, P.A. Designing bisubstrate analog inhibitors for protein kinases. Pharmacol. Ther. 93, 145–157 (2002).

    Article  CAS  Google Scholar 

  20. Schäfer, T. et al. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature 441, 651–655 (2006).

    Article  Google Scholar 

  21. Aaronson, R.P. & Blobel, G. On the attachment of the nuclear pore complex. J. Cell Biol. 62, 746–754 (1974).

    Article  CAS  Google Scholar 

  22. Phillips, J.C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  Google Scholar 

  23. Trabuco, L.G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008).

    Article  CAS  Google Scholar 

  24. Bishop, A.C., Buzko, O. & Shokat, K.M. Magic bullets for protein kinases. Trends Cell Biol. 11, 167–172 (2001).

    Article  CAS  Google Scholar 

  25. Palmgren, M.G. & Nissen, P. P-type ATPases. Annu. Rev. Biophys. 40, 243–266 (2011).

    Article  CAS  Google Scholar 

  26. Ye, Q., Crawley, S.W., Yang, Y., Cote, G.P. & Jia, Z. Crystal structure of the alpha-kinase domain of Dictyostelium myosin heavy chain kinase A. Sci. Signal. 3, ra17 (2010).

    Article  Google Scholar 

  27. Xu, W., Doshi, A., Lei, M., Eck, M.J. & Harrison, S.C. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell 3, 629–638 (1999).

    Article  CAS  Google Scholar 

  28. Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112, 859–871 (2003).

    Article  CAS  Google Scholar 

  29. Malakhova, M. et al. Structural basis for activation of the autoinhibitory C-terminal kinase domain of p90 RSK2. Nat. Struct. Mol. Biol. 15, 112–113 (2008).

    Article  CAS  Google Scholar 

  30. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334, 1524–1529 (2011).

    Article  CAS  Google Scholar 

  31. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

    Article  CAS  Google Scholar 

  32. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  33. Puig, O. et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229 (2001).

    Article  CAS  Google Scholar 

  34. Peluso, P., Shan, S.O., Nock, S., Herschlag, D. & Walter, P. Role of SRP RNA in the GTPase cycles of Ffh and FtsY. Biochemistry 40, 15224–15233 (2001).

    Article  CAS  Google Scholar 

  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  36. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  37. Delano, W. The Pymol molecular graphics system (Delano Scientific, 2002).

  38. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph 14, 33–38, 27–28 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Shokat (Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco California, USA) for providing the ATP analog compounds 3-MB-PP1 and 1-NA-PP1; K. Karbstein (Scripps Research Institute, Jupiter, Florida, USA) for providing anti-Tsr1 antibody; S. Amlacher for providing C. thermophilum cDNA and E. Thomson and S. Griesel for providing ctHrr25 expression vector (Biochemistry Center, University of Heidelberg, Heidelberg, Germany); J. Lechner and his team for mass spectrometry, G. Lorimer (Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA) for assistance and advice in steady-state kinetic measurements, G. Manikas for assistance with single-turnover and ATP-binding assays and M. Gnädig for her excellent technical assistance. Data collection was conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamlines, supported by grants from the US National Center for Research Resources (5P41RR015301-10) and the US National Institute of General Medical Sciences (8 P41 GM103403-10) from the US National Institutes of Health. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract no. DE-AC02-06CH11357. This work was funded by the postdoctoral fellowship from the Medical Faculty of the University of Heidelberg to S.F.-C., the German Research Council (DFG Hu363/10-4) to E.H. and US National Institutes of Health National Cancer Institute grant (K22CA123152) to N.L.-L.

Author information

Authors and Affiliations

Authors

Contributions

S.F.-C., T.S., N.L.-L. and E.H. conceived of the experiments. S.F.-C., T.S. and A.-M.W. constructed all plasmids and yeast strains and carried out all yeast genetic experiments. S.F.-C. performed all the sucrose-gradient analyses, tandem-affinity purifications of yeast proteins and single-turnover and nucleotide-binding analyses. T.S. performed in vitro phosphorylation experiments on purified pre-40S. S.F.-C. and A.-M.W. performed the biochemical characterization of ctRio2. V.S. and E.C. optimized and performed protein purification and identified and refined crystallization conditions. V.S. and N.L.-L. determined the crystal structures. M.D. performed hydroxylamine phosphate release assays and steady-state rate determination using purified protein provided by H.L. N.L.-L. performed ctRio2-40S docking analysis. E.H. and N.L.-L. supervised the work; S.F.-C., N.L.-L. and E.H. wrote the manuscript. All authors commented on the manuscript.

Corresponding authors

Correspondence to Ed Hurt or Nicole LaRonde-LeBlanc.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–2 and Supplementary Note (PDF 6835 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira-Cerca, S., Sagar, V., Schäfer, T. et al. ATPase-dependent role of the atypical kinase Rio2 on the evolving pre-40S ribosomal subunit. Nat Struct Mol Biol 19, 1316–1323 (2012). https://doi.org/10.1038/nsmb.2403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2403

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing