Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dxo1 is a new type of eukaryotic enzyme with both decapping and 5′-3′ exoribonuclease activity

Abstract

Recent studies showed that Rai1 is a crucial component of the mRNA 5′-end-capping quality-control mechanism in yeast. The yeast genome encodes a weak homolog of Rai1, Ydr370C, but little is known about this protein. Here we report the crystal structures of Ydr370C from Kluyveromyces lactis and the first biochemical and functional studies on this protein. The overall structure of Ydr370C is similar to Rai1. Ydr370C has robust decapping activity on RNAs with unmethylated caps, but it has no detectable pyrophosphohydrolase activity. Unexpectedly, Ydr370C also possesses distributive, 5′-3′ exoRNase activity, and we propose the name Dxo1 for this new eukaryotic enzyme with both decapping and exonuclease activities. Studies of yeast in which both Dxo1 and Rai1 are disrupted reveal that mRNAs with incomplete caps are produced even under normal growth conditions, in sharp contrast to current understanding of the capping process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence conservation among Ydr370C (Dxo1), Rai1 and Dom3Z.
Figure 2: Crystal structures of Ydr370C (Dxo1).
Figure 3: Remote structural similarity to D-(D/E)XK nucleases.
Figure 4: Ydr370C (Dxo1) has strong decapping activity but no PPH activity.
Figure 5: Ydr370C (Dxo1) has distributive 5′-3′ exoRNase activity.
Figure 6: Dxo1 is involved in mRNA 5′-end capping quality control.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Shatkin, A.J. & Manley, J.L. The ends of the affair: capping and polyadenylation. Nat. Struct. Biol. 7, 838–842 (2000).

    Article  CAS  Google Scholar 

  2. Shuman, S. The mRNA capping apparatus as drug target and guide to eukaryotic phylogeny. Cold Spring Harb. Symp. Quant. Biol. 66, 301–312 (2001).

    Article  CAS  Google Scholar 

  3. Hocine, S., Singer, R.H. & Grunwald, D. RNA processing and export. Cold Spring Harb. Perspect. Biol. 2, a000752 (2010).

    Article  CAS  Google Scholar 

  4. Ghosh, A. & Lima, C.D. Enzymology of RNA cap synthesis. Wiley Interdiscip. Rev. RNA 1, 152–172 (2010).

    Article  CAS  Google Scholar 

  5. Coller, J. & Parker, R. Eukaryotic mRNA decapping. Annu. Rev. Biochem. 73, 861–890 (2004).

    Article  CAS  Google Scholar 

  6. Cougot, N., van Dijk, E., Babajko, S. & Seraphin, B. 'Cap-tabolism'. Trends Biochem. Sci. 29, 436–444 (2004).

    Article  CAS  Google Scholar 

  7. Franks, T.M. & Lykke-Andersen, S. The control of mRNA decapping and P-body formation. Mol. Cell 32, 605–615 (2008).

    Article  CAS  Google Scholar 

  8. Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell 136, 763–776 (2009).

    Article  CAS  Google Scholar 

  9. Li, Y. & Kiledjian, M. Regulation of mRNA decapping. Wiley Interdiscip. Rev. RNA 1, 253–265 (2010).

    Article  Google Scholar 

  10. Stevens, A. An exoribonuclease from Saccharomyces cerevisiae: effect of modifications of 5′ end groups on the hydrolysis of substrates to 5′ mononucleotides. Biochem. Biophys. Res. Commun. 81, 656–661 (1978).

    Article  CAS  Google Scholar 

  11. Stevens, A. Purification and characterization of a Saccharomyces cerevisiae exoribonuclease which yields 5′-mononucleotides by a 5′→3′ mode of hydrolysis. J. Biol. Chem. 255, 3080–3085 (1980).

    CAS  PubMed  Google Scholar 

  12. Chang, J.H., Xiang, S. & Tong, L. 5′-3′ exoribonucleases. in Ribonucleases, Nucleic Acids and Molecular Biology Vol. 26 (ed. Nicholson, A.W.) Ch. 7, 167–192 (Springer, 2011).

  13. Song, M.-G., Li, Y. & Kiledjian, M. Multiple mRNA decapping enzymes in mammalian cells. Mol. Cell 40, 423–432 (2010).

    Article  CAS  Google Scholar 

  14. Xiang, S. et al. Structure and function of the 5′→3′ exoribonuclease Rat1 and its activating partner Rai1. Nature 458, 784–788 (2009).

    Article  CAS  Google Scholar 

  15. Jiao, X. et al. Identification of a quality-control mechanism for mRNA 5′-end capping. Nature 467, 608–611 (2010).

    Article  CAS  Google Scholar 

  16. Xue, Y. et al. Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p. Mol. Cell. Biol. 20, 4006–4015 (2000).

    Article  CAS  Google Scholar 

  17. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  Google Scholar 

  18. Aravind, L., Makarova, K.S. & Koonin, E.V. Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res. 28, 3417–3432 (2000).

    Article  CAS  Google Scholar 

  19. Buisson, M. et al. A bridge crosses the active-site canyon of the Epstein-Barr virus nuclease with DNase and RNase activities. J. Mol. Biol. 391, 717–728 (2009).

    Article  CAS  Google Scholar 

  20. Dahlroth, S.-L., Gurmu, D., Haas, J., Erlandsen, H. & Nordlund, P. Crystal structure of the shutoff and exonuclease protein from the oncogenic Kaposi's sarcoma-associated herpesvirus. FEBS J. 276, 6636–6645 (2009).

    Article  CAS  Google Scholar 

  21. Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 (2008).

    Article  CAS  Google Scholar 

  22. Zhang, J., Xing, X., Herr, A.B. & Bell, C.E. Crystal structure of E. coli RecE protein reveals a toroidal tetramer for processing double-stranded DNA breaks. Structure 17, 690–702 (2009).

    Article  Google Scholar 

  23. Kovall, R. & Matthews, B.W. Toroidal structure of lambda-exonuclease. Science 277, 1824–1827 (1997).

    Article  CAS  Google Scholar 

  24. Kovall, R.A. & Matthews, B.W. Type II restriction endonucleases: structural, functional and evolutionary relationships. Curr. Opin. Chem. Biol. 3, 578–583 (1999).

    Article  CAS  Google Scholar 

  25. Joshi, H.K., Etzkorn, C., Chatwell, L., Bitinaite, J. & Horton, N.C. Alteration of sequence specificity of the type II restriction endonuclease HincII through an indirect readout mechanism. J. Biol. Chem. 281, 23852–23869 (2006).

    Article  CAS  Google Scholar 

  26. Sinturel, F. et al. Real-time fluorescence detection of exoribonucleases. RNA 15, 2057–2062 (2009).

    Article  CAS  Google Scholar 

  27. Chang, J.H., Xiang, S., Xiang, K., Manley, J.L. & Tong, L. Structural and biochemical studies of the 5′→3′ exoribonuclease Xrn1. Nat. Struct. Mol. Biol. 18, 270–276 (2011).

  28. Buratowski, S. Connections between mRNA 3′ end processing and transcription termination. Curr. Opin. Cell Biol. 17, 257–261 (2005).

    Article  CAS  Google Scholar 

  29. Conti, E. & Izaurralde, E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol. 17, 316–325 (2005).

    Article  CAS  Google Scholar 

  30. Isken, O. & Maquat, L.E. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev. 21, 1833–1856 (2007).

    Article  CAS  Google Scholar 

  31. van Dijk, E.L. et al. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475, 114–117 (2011).

    Article  CAS  Google Scholar 

  32. Thompson, D.M. & Parker, R. Cytoplasmic decay of intergenic transcripts in Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 92–101 (2007).

    Article  CAS  Google Scholar 

  33. Doublié, S. et al. Crystallization and preliminary X-ray analysis of the 9 kDa protein of the mouse signal recognition particle and the selenomethionyl-SRP9. FEBS Lett. 384, 219–221 (1996).

    Article  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  35. Weeks, C.M. & Miller, R. The design and implementation of SnB v2.0. J. Appl. Crystallogr. 32, 120–124 (1999).

    Article  CAS  Google Scholar 

  36. Terwilliger, T.C. SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol. 374, 22–37 (2003).

    Article  CAS  Google Scholar 

  37. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  38. Emsley, P. & Cowtan, K.D. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  39. Brünger, A.T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  40. Schwer, B., Saha, N., Mao, X., Chen, H.W. & Shuman, S. Structure-function analysis of yeast mRNA cap methyltransferase and high-copy suppression of conditional mutants by AdoMet synthase and the ubiquitin conjugating enzyme Cdc34p. Genetics 155, 1561–1576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Köhrer, K. & Domdey, H. Preparation of high molecular weight RNA. Methods Enzymol. 194, 398–405 (1991).

    Article  Google Scholar 

  42. Wang, Z., Day, N., Trifillis, P. & Kiledjian, M. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol. Cell. Biol. 19, 4552–4560 (1999).

    Article  CAS  Google Scholar 

  43. Wang, Z., Jiao, X., Carr-Schmid, A. & Kiledjian, M. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc. Natl. Acad. Sci. USA 99, 12663–12668 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T.G. Kinzy (University of Medicine and Dentistry of New Jersey, Piscataway , New Jersey, USA) for the TAP-tagged Ydr370C strain; N. Whalen, S. Myers and H. Robinson for setting up the X29A beamline at the National Synchrotron Light Source . This research was supported by grants from the US National Institutes of Health to L.T. (GM090059) and M.K. (GM67005).

Author information

Authors and Affiliations

Authors

Contributions

J.H.C. and K.C. performed protein expression, purification and crystallization experiments. J.H.C. carried out crystallographic data collection, structure determination and refinement, as well as mutagenesis and exonuclease assays. X.J. carried out decapping assays and all the studies in yeast cells. C.O. and C.E.M. generated the Rai1 and Dxo1 deletion strains. All authors commented on the manuscript. L.T. and M.K. designed experiments, analyzed data, supervised the project and wrote the paper.

Corresponding authors

Correspondence to Megerditch Kiledjian or Liang Tong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–3 (PDF 2029 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, J., Jiao, X., Chiba, K. et al. Dxo1 is a new type of eukaryotic enzyme with both decapping and 5′-3′ exoribonuclease activity. Nat Struct Mol Biol 19, 1011–1017 (2012). https://doi.org/10.1038/nsmb.2381

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing