Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system

Abstract

STING (stimulator of interferon genes) is an innate immune sensor of cyclic dinucleotides that regulates the induction of type I interferons. STING's C-terminal domain forms a V-shaped dimer and binds a cyclic diguanylate monophosphate (c-di-GMP) at the dimer interface by both direct and solvent-mediated hydrogen bonds. Guanines of c-di-GMP stack against the phenolic rings of a conserved tyrosine, and mutations at the c-di-GMP binding surface reduce nucleotide binding and affect signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STING forms a dimer and binds c-di-GMP at the dimer interface.
Figure 2: Structural basis of c-di-GMP recognition and the dimer interface of STING.
Figure 3: Mutations at the nucleotide binding surface reduce c-di-GMP binding and affect STING signaling.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Keating, S.E., Baran, M. & Bowie, A.G. Trends Immunol. 32, 574–581 (2011).

    Article  CAS  Google Scholar 

  2. Kato, H., Takahasi, K. & Fujita, T. Immunol. Rev. 243, 91–98 (2011).

    Article  Google Scholar 

  3. McWhirter, S.M. et al. J. Exp. Med. 206, 1899–1911 (2009).

    Article  CAS  Google Scholar 

  4. Woodward, J.J., Iavarone, A.T. & Portnoy, D.A. Science 328, 1703–1705 (2010).

    Article  CAS  Google Scholar 

  5. Karaolis, D.K. et al. J. Immunol. 178, 2171–2181 (2007).

    Article  CAS  Google Scholar 

  6. Sondermann, H., Shikuma, N.J. & Yildiz, F.H. Curr. Opin. Microbiol. 15, 140–146 (2012).

    Article  CAS  Google Scholar 

  7. Pesavento, C. & Hengge, R. Curr. Opin. Microbiol. 12, 170–176 (2009).

    Article  CAS  Google Scholar 

  8. Burdette, D.L. et al. Nature 478, 515–518 (2011).

    Article  CAS  Google Scholar 

  9. Barber, G.N. Curr. Opin. Immunol. 23, 10–20 (2011).

    Article  CAS  Google Scholar 

  10. Barber, G.N. Nat. Immunol. 12, 929–930 (2011).

    Article  CAS  Google Scholar 

  11. Unterholzner, L. et al. Nat. Immunol. 11, 997–1004 (2010).

    Article  CAS  Google Scholar 

  12. Zhang, Z. et al. Nat. Immunol. 12, 959–965 (2011).

    Article  CAS  Google Scholar 

  13. Tanaka, Y. & Chen, Z.J. Sci. Signal. 5, ra20 (2012).

    Article  Google Scholar 

  14. Ye, H., Park, Y.C., Kreishman, M., Kieff, E. & Wu, H. Mol. Cell 4, 321–330 (1999).

    Article  CAS  Google Scholar 

  15. Pai, E.F. et al. Nature 341, 209–214 (1989).

    Article  CAS  Google Scholar 

  16. Ishikawa, H. & Barber, G.N. Nature 455, 674–678 (2008).

    Article  CAS  Google Scholar 

  17. Ouyang, S. et al. Immunity published online, doi:10.1016/j.immuni.2012.03.019 (10 May 2012).

  18. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  19. Sheldrick, G.M. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  20. Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  21. Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010).

    Article  CAS  Google Scholar 

  22. Winn, M.D. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  Google Scholar 

  23. tenOever, B.R. et al. J. Virol. 78, 10636–10649 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The diffraction data of the SeMet crystals were collected at beamline 11.1 at the Stanford Synchrotron Radiation Lightsource (SSRL). The ITC binding studies were conducted in T. Begley's laboratory. This research is supported by the US National Institute of Health (grants AI087741 to P.L. and AI073335 to C.C.K.).

Author information

Authors and Affiliations

Authors

Contributions

C.S. crystallized the protein and conducted the binding and kinase assays. P.L. determined the structures. G.Y. conducted the IFN-β reporter assays. T.W. helped with the data collection. P.L., C.C.K., C.S. and T.W. wrote the paper.

Corresponding author

Correspondence to Pingwei Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 4674 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, C., Yi, G., Watts, T. et al. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat Struct Mol Biol 19, 722–724 (2012). https://doi.org/10.1038/nsmb.2331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2331

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing