Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large-scale mapping of branchpoints in human pre-mRNA transcripts in vivo

Subjects

Abstract

We present the first large-scale identification of lariats—the transient branched introns that are released as a byproduct of pre-mRNA splicing. The locations of the branchpoints in these introns provide insight into the early steps of splicing. From this data set, we have developed a comprehensive model of 3′ splice-site selection, identified new mechanisms of alternative splicing and mapped the distribution of splicing factors around branchpoints.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Identifying pre-mRNA lariats in human transcripts.
Figure 2: CLIP-tag density of splicing factors relative to the closest branchpoint.

Accession codes

Accessions

Gene Expression Omnibus

References

  1. 1

    Vogel, J., Hess, W.R. & Borner, T. Nucleic Acids Res. 25, 2030–2031 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Parkinson, H. et al. Nucleic Acids Res. 37, D868–D872 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Stenson, P.D. et al. Hum. Mutat. 21, 577–581 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Legrain, P., Seraphin, B. & Rosbash, M. Mol. Cell. Biol. 8, 3755–3760 (1988).

    CAS  Article  Google Scholar 

  5. 5

    Smith, C.W., Porro, E.B., Patton, J.G. & Nadal-Ginard, B. Nature 342, 243–247 (1989).

    CAS  Article  Google Scholar 

  6. 6

    Gooding, C. et al. Genome Biol. 7, R1 (2006).

    Article  Google Scholar 

  7. 7

    Chen, S., Anderson, K. & Moore, M.J. Proc. Natl. Acad. Sci. USA 97, 593–598 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Chua, K. & Reed, R. Mol. Cell. Biol. 21, 1509–1514 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Meyer, M., Plass, M., Perez-Valle, J., Eyras, E. & Vilardell, J. Mol. Cell 43, 1033–1039 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Smith, C.W.J., Chu, T.T. & Nadalginard, B. Mol. Cell. Biol. 13, 4939–4952 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Quinlan, R. Mach. Learn. 1, 81–106 (1986).

    Google Scholar 

  12. 12

    König, J. et al. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  Google Scholar 

  13. 13

    Xue, Y. et al. Mol. Cell 36, 996–1006 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Yeo, G.W. et al. Nat. Struct. Mol. Biol. 16, 130–137 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Huelga, S.C. et al. Cell Reports 1, 167–178 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  17. 17

    Hertz, G.Z. & Stormo, G.D. Bioinformatics 15, 563–577 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Chenna, R. et al. Nucleic Acids Res. 31, 3497–3500 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. Genome Res. 14, 1188–1190 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Trapnell, C., Pachter, L. & Salzberg, S.L. Bioinformatics 25, 1105–1111 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Ding, Y., Chan, C.Y. & Lawrence, C.E. Nucleic Acids Res. 32, W135–W141 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank R. Freiman and members of the Fairbrother lab for useful comments, suggestions and assistance; G. Schroth and Illumina for sharing body-map sequencing data; and G. Yeo for sharing RNA binding data before publication. The lab was supported by US federal funding sources R01GM095612–01 and NSF1020552 (both to A.J.T., W.G.F., J.S.S.) and by Brown University through the use of the OSCAR cluster (administered by the Center for Computation and Visualization) and the genomics core facility (8P30GM103410).

Author information

Affiliations

Authors

Contributions

A.J.T. and W.G.F conceived and planned the project. A.J.T., A.M.D., J.S.S. and M.E.F collected data. A.J.T., A.M.D., J.S.S. and M.E.F performed analysis. A.J.T., A.M.D., J.S.S. and W.G.F. wrote the paper.

Corresponding author

Correspondence to William G Fairbrother.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1 and 2 (PDF 1930 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taggart, A., DeSimone, A., Shih, J. et al. Large-scale mapping of branchpoints in human pre-mRNA transcripts in vivo. Nat Struct Mol Biol 19, 719–721 (2012). https://doi.org/10.1038/nsmb.2327

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing