Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ERK1 and ERK2 regulate embryonic stem cell self-renewal through phosphorylation of Klf4

Abstract

Understanding and controlling the mechanism by which stem cells balance self-renewal versus differentiation is of great importance for stem cell therapeutics. Klf4 promotes the self-renewal of embryonic stem cells, but the precise mechanism regulating this role of Klf4 is unclear. We found that ERK1 or ERK2 binds the activation domain of Klf4 and directly phosphorylates Klf4 at Ser123. This phosphorylation suppresses Klf4 activity, inducing embryonic stem cell differentiation. Conversely, inhibition of Klf4 phosphorylation enhances Klf4 activity and suppresses embryonic stem cell differentiation. Notably, phosphorylation of Klf4 by ERKs causes recruitment and binding of the F-box proteins βTrCP1 or βTrCP2 (components of an ubiquitin E3 ligase) to the Klf4 N-terminal domain, which results in Klf4 ubiquitination and degradation. Overall, our data provide a molecular basis for the role of ERK1 and ERK2 in regulating Klf4-mediated mouse embryonic stem cell self-renewal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Klf4 is a substrate of ERK1 or ERK2.
Figure 2: ERK1 phosphorylates Klf4 Ser123.
Figure 3: Inhibiting ERK signaling induces self-renewal of embryonic stem cells.
Figure 4: Klf4 Ser123 phosphorylation has a role in embryonic stem cell self-renewal.
Figure 5: Klf4 Ser123 phosphorylation induces βTrCP binding.
Figure 6: Effect of the βTrCP2 phosphodegron in Klf4 on binding with βTrCP2.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Moretti, A. et al. Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors. FASEB J. 24, 700–711 (2010).

    Article  CAS  Google Scholar 

  2. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).

    Article  CAS  Google Scholar 

  3. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  Google Scholar 

  4. Van Hoof, D. et al. Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214–226 (2009).

    Article  CAS  Google Scholar 

  5. Tsuruzoe, S. et al. Inhibition of DNA binding of Sox2 by the SUMO conjugation. Biochem. Biophys. Res. Commun. 351, 920–926 (2006).

    Article  CAS  Google Scholar 

  6. Baltus, G.A. et al. Acetylation of sox2 induces its nuclear export in embryonic stem cells. Stem Cells 27, 2175–2184 (2009).

    Article  CAS  Google Scholar 

  7. Saxe, J.P., Tomilin, A., Scholer, H.R., Plath, K. & Huang, J. Post-translational regulation of Oct4 transcriptional activity. PLoS ONE 4, e4467 (2009).

    Article  Google Scholar 

  8. Wei, F., Scholer, H.R. & Atchison, M.L. Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J. Biol. Chem. 282, 21551–21560 (2007).

    Article  CAS  Google Scholar 

  9. Garrett-Sinha, L.A., Eberspaecher, H., Seldin, M.F. & de Crombrugghe, B. A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J. Biol. Chem. 271, 31384–31390 (1996).

    Article  CAS  Google Scholar 

  10. Bruce, S.J. et al. Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-free BMP4 culture. BMC Genomics 8, 365 (2007).

    Article  Google Scholar 

  11. Evans, P.M. & Liu, C. Roles of Krüpel-like factor 4 in normal homeostasis, cancer and stem cells. Acta Biochim. Biophys. Sin. (Shanghai) 40, 554–564 (2008).

    Article  CAS  Google Scholar 

  12. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  13. Roth, G. et al. MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro. J. Biol. Chem. 275, 33302–33307 (2000).

    Article  CAS  Google Scholar 

  14. Sharrocks, A.D., Yang, S.H. & Galanis, A. Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem. Sci. 25, 448–453 (2000).

    Article  CAS  Google Scholar 

  15. Tanoue, T., Maeda, R., Adachi, M. & Nishida, E. Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions. EMBO J. 20, 466–479 (2001).

    Article  CAS  Google Scholar 

  16. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    Article  CAS  Google Scholar 

  17. Ying, Q.L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  Google Scholar 

  18. Nakatake, Y. et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol. Cell. Biol. 26, 7772–7782 (2006).

    Article  CAS  Google Scholar 

  19. Rodolfa, K.T. & Eggan, K. A transcriptional logic for nuclear reprogramming. Cell 126, 652–655 (2006).

    Article  CAS  Google Scholar 

  20. Cardozo, T. & Pagano, M. The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5, 739–751 (2004).

    Article  CAS  Google Scholar 

  21. Liu, N. et al. The Fbw7/human CDC4 tumor suppressor targets proproliferative factor KLF5 for ubiquitination and degradation through multiple phosphodegron motifs. J. Biol. Chem. 285, 18858–18867 (2010).

    Article  CAS  Google Scholar 

  22. Williams, R.L. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687 (1988).

    Article  CAS  Google Scholar 

  23. Smith, A.G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 (1988).

    Article  CAS  Google Scholar 

  24. Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060 (1998).

    Article  CAS  Google Scholar 

  25. Rodda, D.J. et al. Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem. 280, 24731–24737 (2005).

    Article  CAS  Google Scholar 

  26. Hall, J. et al. Oct4 and LIF/Stat3 additively induce Krüppel factors to sustain embryonic stem cell self-renewal. Cell Stem Cell 5, 597–609 (2009).

    Article  CAS  Google Scholar 

  27. Burdon, T., Stracey, C., Chambers, I., Nichols, J. & Smith, A. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev. Biol. 210, 30–43 (1999).

    Article  CAS  Google Scholar 

  28. Rowland, B.D. & Peeper, D.S. KLF4, p21 and context-dependent opposing forces in cancer. Nat. Rev. Cancer 6, 11–23 (2006).

    Article  CAS  Google Scholar 

  29. Zhang, P., Andrianakos, R., Yang, Y., Liu, C. & Lu, W. Krüppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. J. Biol. Chem. 285, 9180–9189 (2010).

    Article  CAS  Google Scholar 

  30. Chuderland, D. & Seger, R. Protein-protein interactions in the regulation of the extracellular signal-regulated kinase. Mol. Biotechnol. 29, 57–74 (2005).

    Article  CAS  Google Scholar 

  31. Yoon, S. & Seger, R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24, 21–44 (2006).

    Article  CAS  Google Scholar 

  32. Fernandes, N., Bailey, D.E., Vanvranken, D.L. & Allbritton, N.L. Use of docking peptides to design modular substrates with high efficiency for mitogen-activated protein kinase extracellular signal-regulated kinase. ACS Chem. Biol. 2, 665–673 (2007).

    Article  CAS  Google Scholar 

  33. Sheridan, D.L., Kong, Y., Parker, S.A., Dalby, K.N. & Turk, B.E. Substrate discrimination among mitogen-activated protein kinases through distinct docking sequence motifs. J. Biol. Chem. 283, 19511–19520 (2008).

    Article  CAS  Google Scholar 

  34. Li, H.X. et al. Krüppel-like factor 4 promotes differentiation by transforming growth factor-beta receptor-mediated Smad and p38 MAPK signaling in vascular smooth muscle cells. J. Biol. Chem. 285, 17846–17856 (2010).

    Article  CAS  Google Scholar 

  35. Tan, F. et al. Proteomic analysis of ubiquitinated proteins in normal hepatocyte cell line Chang liver cells. Proteomics 8, 2885–2896 (2008).

    Article  CAS  Google Scholar 

  36. Boyer, L.A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  Google Scholar 

  37. Hailesellasse Sene, K. et al. Gene function in early mouse embryonic stem cell differentiation. BMC Genomics 8, 85 (2007).

    Article  Google Scholar 

  38. Chen, X. et al. Krüppel-like factor 4 (gut-enriched Krüppel-like factor) inhibits cell proliferation by blocking G1/S progression of the cell cycle. J. Biol. Chem. 276, 30423–30428 (2001).

    Article  CAS  Google Scholar 

  39. Shields, J.M., Christy, R.J. & Yang, V.W. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J. Biol. Chem. 271, 20009–20017 (1996).

    Article  CAS  Google Scholar 

  40. Foster, K.W. et al. Oncogene expression cloning by retroviral transduction of adenovirus E1A-immortalized rat kidney RK3E cells: transformation of a host with epithelial features by c-MYC and the zinc finger protein GKLF. Cell Growth Differ. 10, 423–434 (1999).

    CAS  Google Scholar 

  41. Suzuki, T. et al. New genes involved in cancer identified by retroviral tagging. Nat. Genet. 32, 166–174 (2002).

    Article  CAS  Google Scholar 

  42. Cho, Y.Y. et al. RSK2 mediates muscle cell differentiation through regulation of NFAT3. J. Biol. Chem. 282, 8380–8392 (2007).

    Article  CAS  Google Scholar 

  43. Zhou, F.F., Xue, Y., Chen, G.L. & Yao, X. GPS: a novel group-based phosphorylation predicting and scoring method. Biochem. Biophys. Res. Commun. 325, 1443–1448 (2004).

    Article  CAS  Google Scholar 

  44. Sharrocks, A.D., Yang, S.H. & Galanis, A. Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem. Sci. 25, 448–453 (2000).

    Article  CAS  Google Scholar 

  45. Liu, S., Sun, J.P., Zhou, B. & Zhang, Z.Y. Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3. Proc. Natl. Acad. Sci. USA 103, 5326–5331 (2006).

    Article  CAS  Google Scholar 

  46. Zhou, T., Sun, L., Humphreys, J. & Goldsmith, E.J. Docking interactions induce exposure of activation loop in the MAP kinase ERK2. Structure 14, 1011–1019 (2006).

    Article  CAS  Google Scholar 

  47. Jorgensen, W.L. & Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988).

    Article  CAS  Google Scholar 

  48. Head, J.D. & Zerner, M.C. A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 122, 264–270 (1985).

    Article  CAS  Google Scholar 

  49. Nakatake, Y. et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol. Cell. Biol. 26, 7772–7782 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Pagano (New York University School of Medicine) for the kind gift of plasmids, including βTrCP1/2 and several F boxes. We thank H. Niwa (RIKEN Center for Developmental Biology (CDB)) for the kind gift of plasmids, including the Lefty1 core promoter. We wish to thank T.M. Poorman for secretarial assistance. This work was supported by The Hormel Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.O.K. and S.-H.K. designed experiments, participated in writing the manuscript, cultured embryonic stem cells and conducted immunoprecipitation experiments and screening. Y.-Y.C. designed experiments and participated in writing the manuscript. J.N. and Z.H. carried out the computational biology and modeling. C.-H.J. participated in experimental design and cultured embryonic stem cells. K.Y. cultured embryonic stem cells and did the immunofluorescence and kinase assays. D.J.K. did the kinase assays. D.-H.Y. cultured embryonic stem cells. Y.-S.K. participated in designing the experiments and cultured the lentivirus for knockdown of Klf4. K.-Y.L. cultured embryonic stem cells. A.M.B. and Z.D. supervised the design of the experiments and the manuscript editing and writing.

Corresponding author

Correspondence to Zigang Dong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 1620 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Kim, SH., Cho, YY. et al. ERK1 and ERK2 regulate embryonic stem cell self-renewal through phosphorylation of Klf4. Nat Struct Mol Biol 19, 283–290 (2012). https://doi.org/10.1038/nsmb.2217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing