Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The export factor Yra1 modulates mRNA 3′ end processing

Abstract

The Saccharomyces cerevisiae mRNA export adaptor Yra1 binds the Pcf11 subunit of cleavage-polyadenylation factor CF1A that links export to 3′ end formation. We found that an unexpected consequence of this interaction is that Yra1 influences cleavage-polyadenylation. Yra1 competes with the CF1A subunit Clp1 for binding to Pcf11, and excess Yra1 inhibits 3′ processing in vitro. Release of Yra1 at the 3′ ends of genes coincides with recruitment of Clp1, and depletion of Yra1 enhances Clp1 recruitment within some genes. These results suggest that CF1A is not necessarily recruited as a complete unit; instead, Clp1 can be incorporated co-transcriptionally in a process regulated by Yra1. Yra1 depletion causes widespread changes in poly(A) site choice, particularly at sites where the efficiency element is divergently positioned. We propose that one way Yra1 modulates cleavage-polyadenylation is by influencing co-transcriptional assembly of the CF1A 3′ processing factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Yra1 influences the cleavage-polyadenylation apparatus.
Figure 2: Distinct ChIP profiles for export and 3′ processing factors.
Figure 3: Yra1 depletion enhances Clp1 recruitment on long genes.
Figure 4: Yra1 depletion affects alternative poly(A) site choice at ACT1.
Figure 5: Widespread effects of Yra1 depletion on alternative poly(A) site choice within 3′ UTRs.
Figure 6: Yra1 depletion alters use of poly(A) sites within genes and at ncRNAs.
Figure 7: Positioning of the consensus efficiency element differs between Yra1-sensitive and Yra1-insensitive poly(A) sites.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Iglesias, N. & Stutz, F. Regulation of mRNP dynamics along the export pathway. FEBS Lett. 582, 1987–1996 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Schmid, M. & Jensen, T.H. Quality control of mRNP in the nucleus. Chromosoma 117, 419–429 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Luna, R., Gaillard, H., Gonzalez-Aguilera, C. & Aguilera, A. Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 117, 319–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Perales, R. & Bentley, D. 'Cotranscriptionality': the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 36, 178–191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eckner, R., Ellmeier, W. & Birnstiel, M.L. Mature mRNA 3′ end formation stimulates RNA export from the nucleus. EMBO J. 10, 3513–3522 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang, Y. & Carmichael, G.C. Role of polyadenylation in nucleocytoplasmic transport of mRNA. Mol. Cell Biol. 16, 1534–1542 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hammell, C.M. et al. Coupling of termination, 3′ processing, and mRNA export. Mol. Cell Biol. 22, 6441–6457 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lei, E.P. & Silver, P.A. Intron status and 3′-end formation control cotranscriptional export of mRNA. Genes Dev. 16, 2761–2766 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rougemaille, M. et al. THO/Sub2p functions to coordinate 3′-end processing with gene-nuclear pore association. Cell 135, 308–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Daneholt, B. Assembly and transport of a premessenger RNP particle. Proc. Natl. Acad. Sci. USA 98, 7012–7017 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lei, E.P., Krebber, H. & Silver, P.A. Messenger RNAs are recruited for nuclear export during transcription. Genes Dev. 15, 1771–1782 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zenklusen, D., Vinciguerra, P., Wyss, J.C. & Stutz, F. Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol. Cell Biol. 22, 8241–8253 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kiesler, E., Miralles, F. & Visa, N. HEL/UAP56 binds cotranscriptionally to the Balbiani ring pre-mRNA in an intron-independent manner and accompanies the BR mRNP to the nuclear pore. Curr. Biol. 12, 859–862 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Hieronymus, H. & Silver, P.A. Genome-wide analysis of RNA-protein interactions illustrates specificity of the mRNA export machinery. Nat. Genet. 33, 155–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Johnson, S.A., Cubberley, G. & Bentley, D.L. Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3′ end processing factor Pcf11. Mol. Cell 33, 215–226 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Taniguchi, I. & Ohno, M. ATP-dependent recruitment of export factor Aly/REF onto intronless mRNAs by RNA helicase UAP56. Mol. Cell Biol. 28, 601–608 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Abruzzi, K.C., Lacadie, S. & Rosbash, M. Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBO J. 23, 2620–2631 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iglesias, N. et al. Ubiquitin-mediated mRNP dynamics and surveillance prior to budding yeast mRNA export. Genes Dev. 24, 1927–1938 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Köhler, A. & Hurt, E. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol. 8, 761–773 (2007).

    Article  PubMed  Google Scholar 

  20. Kim, M., Ahn, S.-H., Krogan, N.J., Greenblatt, J.F. & Buratowski, S. Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J. 23, 354–364 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mandel, C.R., Bai, Y. & Tong, L. Protein factors in pre-mRNA 3′-end processing. Cell. Mol. Life Sci. 65, 1099–1122 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Millevoi, S. & Vagner, S. Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res. 38, 2757–2774 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, J., Hyman, L. & Moore, C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63, 405–445 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo, Z. & Sherman, F. 3′-end-forming signals of yeast messenger RNA. Trends Biochem. Sci. 21, 477–481 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Graber, J.H., McAllister, G.D. & Smith, T.F. Probabilistic prediction of Saccharomyces cerevisiae mRNA 3′-processing sites. Nucleic Acids Res. 30, 1851–1858 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gross, S. & Moore, C. Five subunits are required for reconstitution of the cleavage and polyadenylation activities of Saccharomyces cerevisiae cleavage factor I. Proc. Natl. Acad. Sci. USA 98, 6080–6085 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leeper, T.C., Qu, X., Lu, C., Moore, C. & Varani, G. Novel protein–protein contacts facilitate mRNA 3′-processing signal recognition by Rna15 and Hrp1. J. Mol. Biol. 401, 334–349 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Minvielle-Sebastia, L. et al. Control of cleavage site selection during mRNA 3′ end formation by a yeast hnRNP. EMBO J. 17, 7454–7468 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim Guisbert, K.S., Li, H. & Guthrie, C. Alternative 3′ pre-mRNA processing in Saccharomyces cerevisiae is modulated by Nab4/Hrp1 in vivo. PLoS Biol. 5, e6 (2007).

    Article  PubMed  Google Scholar 

  31. Lykke-Andersen, S. & Jensen, T.H. Overlapping pathways dictate termination of RNA polymerase II transcription. Biochimie 89, 1177–1182 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Grzechnik, P. & Kufel, J. Polyadenylation linked to transcription termination directs the processing of snoRNA precursors in yeast. Mol. Cell 32, 247–258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Phatnani, H.P. & Greenleaf, A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Strässer, K. & Hurt, E. Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature 413, 648–652 (2001).

    Article  PubMed  Google Scholar 

  35. Saguez, C. et al. Nuclear mRNA surveillance in THO/sub2 mutants is triggered by inefficient polyadenylation. Mol. Cell 31, 91–103 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Noble, C.G., Beuth, B. & Taylor, I.A. Structure of a nucleotide-bound Clp1-Pcf11 polyadenylation factor. Nucleic Acids Res. 35, 87–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Saguez, C. & Jensen, T.H. Assembly of export-competent mRNP: it's all about being connected. Mol. Cell 33, 139–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Lutz, C.S. & Moreira, A. Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression. WIREs RNA 2, 23–31 (2011).

    Article  PubMed  Google Scholar 

  39. Ji, Z. & Tian, B. Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS ONE 4, e8419 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mayr, C. & Bartel, D.P. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ozsolak, F. et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143, 1018–1029 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Preker, P.J., Kim, K.S. & Guthrie, C. Expression of the essential mRNA export factor Yra1p is autoregulated by a splicing-dependent mechanism. RNA 8, 969–980 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, H. et al. Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat. Struct. Mol. Biol. 17, 1279–1286 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mayer, A. et al. Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 17, 1272–1278 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Mandart, E. & Parker, R. Effects of mutations in the Saccharomyces cerevisiae RNA14, RNA15, and PAP1 genes on polyadenylation in vivo. Mol. Cell Biol. 15, 6979–6986 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mandart, E. Effects of mutations in the Saccharomyces cerevisiae RNA14 gene on the abundance and polyadenylation of its transcripts. Mol. Gen. Genet. 258, 16–25 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Kessler, M.M. et al. Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3′-end formation in yeast. Genes Dev. 11, 2545–2556 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gross, S. & Moore, C.L. Rna15 interaction with the A-rich yeast polyadenylation signal is an essential step in mRNA 3′-end formation. Mol. Cell Biol. 21, 8045–8055 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bucheli, M.E., He, X., Kaplan, C.D., Moore, C.L. & Buratowski, S. Polyadenylation site choice in yeast is affected by competition between Npl3 and polyadenylation factor CFI. RNA 13, 1756–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Veraldi, K.L. et al. hnRNP F influences binding of a 64-kilodalton subunit of cleavage stimulation factor to mRNA precursors in mouse B cells. Mol. Cell Biol. 21, 1228–1238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gawande, B., Robida, M.D., Rahn, A. & Singh, R. Drosophila Sex-lethal protein mediates polyadenylation switching in the female germline. EMBO J. 25, 1263–1272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bruhn, L., Munnerlyn, A. & Grosschedl, R. ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function. Genes Dev. 11, 640–653 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Virbasius, C.M., Wagner, S. & Green, M.R. A human nuclear-localized chaperone that regulates dimerization, DNA binding, and transcriptional activity of bZIP proteins. Mol. Cell 4, 219–228 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. de Vries, H. et al. Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors. EMBO J. 19, 5895–5904 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Takagaki, Y., Seipelt, R.L., Peterson, M.L. & Manley, J.L. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87, 941–952 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Kaida, D. et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468, 664–668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stutz, F. et al. REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA 6, 638–650 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao, J., Kessler, M., Helmling, S., O'Connor, J.P. & Moore, C. Pta1, a component of yeast CF II, is required for both cleavage and poly(A) addition of mRNA precursor. Mol. Cell Biol. 19, 7733–7740 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mangone, M. et al. The Landscape of C. elegans 3′UTRs. Science 329, 432–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant GM58613 to D.B. We thank C. Moore (Tufts University) for GAL7 plasmids and advice on processing extracts, R. Zhao (University of Colorado) for recombinant Sub2, C. Wang and M. Covarrubias (City of Hope Functional Genomics Core) for array hybridization, J. Dover and J. Castoe for Illumina sequencing, and T. Blumenthal and J. Hesselberth (University of Colorado) for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

S.A.J., B.E. and D.L.B. designed and conducted the experiments. H.K. wrote the software and carried out the informatics. S.A.J., H.K. and D.L.B. wrote the paper.

Corresponding author

Correspondence to David L Bentley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1 and Supplementary Methods (PDF 6697 kb)

Supplementary Data 1

Gene lists used in this study (XLS 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, S., Kim, H., Erickson, B. et al. The export factor Yra1 modulates mRNA 3′ end processing. Nat Struct Mol Biol 18, 1164–1171 (2011). https://doi.org/10.1038/nsmb.2126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing