Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin

Abstract

Heterochromatin assembly at Schizosaccharomyces pombe centromeres involves a self-reinforcing loop mechanism wherein chromatin-bound RNAi factors facilitate targeting of Clr4–Rik1 methyltransferase. However, the initial nucleation of heterochromatin has remained elusive. We show that cells lacking Mlo3, a protein involved in mRNP biogenesis and RNA quality control, assemble functional heterochromatin in RNAi-deficient cells. Heterochromatin restoration is linked to RNA surveillance because loss of Mlo3-associated TRAMP also rescues heterochromatin defects of RNAi mutants. mlo3Δ, which causes accumulation of bidirectional repeat-transcripts, restores Rik1 enrichment at repeats and triggers de novo heterochromatin formation in the absence of RNAi. RNAi-independent heterochromatin nucleation occurs at selected euchromatic loci that show upregulation of antisense RNAs in mlo3Δ cells. We find that the exosome RNA degradation machinery acts parallel to RNAi to promote heterochromatin formation at centromeres. These results suggest that RNAi-independent mechanisms exploit transcription and non-coding RNAs to nucleate heterochromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mlo3Δ restores functional heterochromatin at centromeres in the ago1Δ mutant.
Figure 2: tfs1Δ restores centromeric heterochromatin in ago1Δ cells.
Figure 3: tfs1Δ and mlo3Δ differentially suppress heterochromatin defects in clr3Δ ago1Δ double mutant cells.
Figure 4: Loss of RNA surveillance factor TRAMP restores centromeric heterochromatin in ago1Δ cells.
Figure 5: Rrp6 acts parallel to RNAi to mediate heterochromatin formation and silencing at centromeres.
Figure 6: mlo3Δ restores Rik1 enrichment at centromeric repeats and triggers de novo heterochromatin formation in the absence of RNAi.
Figure 7: RNAi-independent heterochromatin formation occurs at euchromatic loci in mlo3Δ cells.

Similar content being viewed by others

References

  1. Grewal, S.I. & Elgin, S.C. Transcription and RNA interference in the formation of heterochromatin. Nature 447, 399–406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ekwall, K. Epigenetic control of centromere behavior. Annu. Rev. Genet. 41, 63–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Cam, H.P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat. Genet. 37, 809–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Noma, K. et al. RITS acts in cis to promote RNA interference–mediated transcriptional and post-transcriptional silencing. Nat. Genet. 36, 1174–1180 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Schalch, T. et al. High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin. Mol. Cell 34, 36–46 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bayne, E.H. et al. Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 140, 666–677 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, K., Mosch, K., Fischle, W. & Grewal, S.I. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 15, 381–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S.I. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl. Acad. Sci. USA 102, 152–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Fischer, T. et al. Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast. Proc. Natl. Acad. Sci. USA 106, 8998–9003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sugiyama, T. et al. SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128, 491–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Motamedi, M.R. et al. HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol. Cell 32, 778–790 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamane, K. et al. Asf1/HIRA facilitate global histone deacetylation and associate with HP1 to promote nucleosome occupancy at heterochromatic loci. Mol. Cell 41, 56–66 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, E.S. et al. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451, 734–737 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Kloc, A., Zaratiegui, M., Nora, E. & Martienssen, R. RNA interference guides histone modification during the S phase of chromosomal replication. Curr. Biol. 18, 490–495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Djupedal, I. et al. RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev. 19, 2301–2306 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kato, H. et al. RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309, 467–469 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Bayne, E.H. et al. Splicing factors facilitate RNAi-directed silencing in fission yeast. Science 322, 602–606 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith, E. & Shilatifard, A. The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. Mol. Cell 40, 689–701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Strässer, K. et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304–308 (2002).

    Article  PubMed  Google Scholar 

  22. Houseley, J., LaCava, J. & Tollervey, D. RNA-quality control by the exosome. Nat. Rev. Mol. Cell Biol. 7, 529–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, S.W., Stevenson, A.L., Kearsey, S.E., Watt, S. & Bahler, J. Global role for polyadenylation-assisted nuclear RNA degradation in posttranscriptional gene silencing. Mol. Cell. Biol. 28, 656–665 (2008).

    Article  PubMed  Google Scholar 

  24. Bühler, M., Haas, W., Gygi, S.P. & Moazed, D. RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 129, 707–721 (2007).

    Article  PubMed  Google Scholar 

  25. Halic, M. & Moazed, D. Dicer-independent primal RNAs trigger RNAi and heterochromatin formation. Cell 140, 504–516 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thakurta, A.G., Gopal, G., Yoon, J.H., Kozak, L. & Dhar, R. Homolog of BRCA2-interacting Dss1p and Uap56p link Mlo3p and Rae1p for mRNA export in fission yeast. EMBO J. 24, 2512–2523 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bernard, P. & Allshire, R. Centromeres become unstuck without heterochromatin. Trends Cell Biol. 12, 419–424 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Hall, I.M., Noma, K. & Grewal, S.I. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl. Acad. Sci. USA 100, 193–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Provost, P. et al. Dicer is required for chromosome segregation and gene silencing in fission yeast cells. Proc. Natl. Acad. Sci. USA 99, 16648–16653 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, K. et al. Clr4/Suv39 and RNA quality control factors cooperate to trigger RNAi and suppress antisense RNA. Science 331, 1624–1627 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamada, T., Fischle, W., Sugiyama, T., Allis, C.D. & Grewal, S.I. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol. Cell 20, 173–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Kulish, D. & Struhl, K. TFIIS enhances transcriptional elongation through an artificial arrest site in vivo. Mol. Cell. Biol. 21, 4162–4168 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Williams, L.A. & Kane, C.M. Isolation and characterization of the Schizosaccharomyces pombe gene encoding transcript elongation factor TFIIS. Yeast 12, 227–236 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Kvint, K. et al. Reversal of RNA polymerase II ubiquitylation by the ubiquitin protease Ubp3. Mol. Cell 30, 498–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Iida, T., Nakayama, J. & Moazed, D. siRNA-mediated heterochromatin establishment requires HP1 and is associated with antisense transcription. Mol. Cell 31, 178–189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Simmer, F. et al. Hairpin RNA induces secondary small interfering RNA synthesis and silencing in trans in fission yeast. EMBO Rep. 11, 112–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hilleren, P., McCarthy, T., Rosbash, M., Parker, R. & Jensen, T.H. Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 413, 538–542 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Libri, D. et al. Interactions between mRNA export commitment, 3′-end quality control, and nuclear degradation. Mol. Cell. Biol. 22, 8254–8266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grewal, S.I. & Klar, A.J. A recombinationally repressed region between mat2 and mat3 loci shares homology to centromeric repeats and regulates directionality of mating-type switching in fission yeast. Genetics 146, 1221–1238 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hall, I.M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Ponting, C.P., Oliver, P.L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell 136, 629–641 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Bonasio, R., Tu, S. & Reinberg, D. Molecular signals of epigenetic states. Science 330, 612–616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sadaie, M., Iida, T., Urano, T. & Nakayama, J. A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J. 23, 3825–3835 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shanker, S. et al. Continuous requirement for the Clr4 complex but not RNAi for centromeric heterochromatin assembly in fission yeast harboring a disrupted RITS complex. PLoS Genet. 6, e1001174 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Moshkovich, N. & Lei, E.P. HP1 recruitment in the absence of argonaute proteins in Drosophila. PLoS Genet. 6, e1000880 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Freitag, M. et al. DNA methylation is independent of RNA interference in Neurospora. Science 304, 1939 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Henderson, I.R. & Jacobsen, S.E. Epigenetic inheritance in plants. Nature 447, 418–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Kavi, H.H. & Birchler, J.A. Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila. Epigenetics Chromatin 2, 15 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guang, S. et al. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 465, 1097–1101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Orphanides, G. & Reinberg, D. RNA polymerase II elongation through chromatin. Nature 407, 471–475 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Li, X. & Manley, J.L. Cotranscriptional processes and their influence on genome stability. Genes Dev. 20, 1838–1847 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Pal-Bhadra, M., Bhadra, U. & Birchler, J.A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell 9, 315–327 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Bühler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125, 873–886 (2006).

    Article  PubMed  Google Scholar 

  54. Lee, J.T. Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev. 23, 1831–1842 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharp, P.A. The centrality of RNA. Cell 136, 577–580 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Matzke, M.A. & Birchler, J.A. RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 6, 24–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Maison, C. et al. SUMOylation promotes de novo targeting of HP1α to pericentric heterochromatin. Nat. Genet. 43, 220–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Chapman, R.D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780–1782 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Zofall, M. et al. Histone H2A.Z cooperates with RNAi and heterochromatin factors to suppress antisense RNAs. Nature 461, 419–422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gilbert, C. & Svejstrup, J.Q. RNA immunoprecipitation for determining RNA-protein associations in vivo. Curr. Protoc. Mol. Biol. 27, 27.4 (2006).

    Google Scholar 

Download references

Acknowledgements

We are thankful to D. Eick (Helmholtz Center Munich) for the gift of phospho (Ser2) RNAPII antibody, R. Dhar and N. Krogan (University of California, San Francisco) for strains, J. Dhakshnamoorthy, N. Komissarova and S. Mehta for helpful contributions, and members of the Grewal laboratory for discussions. This research was supported by the Intramural Research Program of the US National Institutes of Health, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

F.E.R.-T., K.Z. and S.I.S.G. designed the research. K.Z., F.E.R.-T. and M.Z. conducted the experiments. E.C. contributed the reagents. F.E.R.-T., K.Z. and S.I.S.G. analyzed the data. F.E.R.-T. and S.I.S.G. wrote the paper. F.E.R.-T., K.Z. and S.I.S.G. edited the paper.

Corresponding author

Correspondence to Shiv I S Grewal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 9646 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes-Turcu, F., Zhang, K., Zofall, M. et al. Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nat Struct Mol Biol 18, 1132–1138 (2011). https://doi.org/10.1038/nsmb.2122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing