Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Implications of molecular heterogeneity for the cooperativity of biological macromolecules

Abstract

Cooperativity, a universal property of biological macromolecules, is typically characterized by a Hill slope, which can provide fundamental information about binding sites and interactions. We demonstrate, through simulations and single-molecule FRET (smFRET) experiments, that molecular heterogeneity lowers bulk cooperativity from the intrinsic value for the individual molecules. As heterogeneity is common in smFRET experiments, appreciation of its influence on fundamental measures of cooperativity is critical for deriving accurate molecular models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulations of ligand binding cooperativity with a heterogeneous population of molecules.
Figure 2: smFRET measurements of P4-P6 RNA folding.
Figure 3: Cooperativity of Ba2+-dependent folding for 126 P4-P6 molecules measured by smFRET.

Similar content being viewed by others

References

  1. De Meyts, P., Roth, J., Neville, D.M., Gavin, J.R. & Lesniak, M.A. Biochem. Biophys. Res. Commun. 55, 154–161 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. Levitzki, A. & Koshland, D.E. Proc. Natl. Acad. Sci. USA 62, 1121–1128 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lohman, T.M. & Ferrari, M.E. Annu. Rev. Biochem. 63, 527–570 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Perutz, M.F. Q. Rev. Biophys. 22, 139–237 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Hill, A.V. J. Phys. 40, iv–vii (1910).

    Google Scholar 

  6. Weiss, J.N. FASEB J. 11, 835–841 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Wyman, J. Adv. Protein Chem. 19, 223–286 (1964).

    Article  CAS  PubMed  Google Scholar 

  8. Lu, H.P., Xun, L.Y. & Xie, X.S. Science 282, 1877–1882 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Zhuang, X. et al. Science 296, 1473–1476 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Okumus, B., Wilson, T.J., Lilley, D.M.J. & Ha, T. Biophys. J. 87, 2798–2806 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qu, X.H. et al. Proc. Natl. Acad. Sci. USA 105, 6602–6607 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Solomatin, S.V., Greenfeld, M., Chu, S. & Herschlag, D. Nature 463, 681–684 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sattin, B.D., Zhao, W., Travers, K., Chu, S. & Herschlag, D. J. Am. Chem. Soc. 130, 6085–6087 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Draper, D.E., Grilley, D. & Soto, A.M. Annu. Rev. Biophys. Biomol. Struct. 34, 221–243 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Draper, D.E. Biophys. J. 95, 5489–5495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Das, R., Travers, K.J., Bai, Y. & Herschlag, D. J. Am. Chem. Soc. 127, 8272–8273 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Das, R. et al. J. Mol. Biol. 332, 311–319 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Greenfeld, M., Solomatin, S.V., Herschlag, D. J. Biol. Chem. doi:10.1074/jbc.M111.235465 (08 April 2011).

  19. Bartley, L.E., Zhuang, X.W., Das, R., Chu, S. & Herschlag, D. J. Mol. Biol. 328, 1011–1026 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Tawfik, D.S. Nat. Chem. Biol. 6, 692–696 (2010).

    Article  PubMed  Google Scholar 

  21. Travers, K.J., Boyd, N. & Herschlag, D. RNA 13, 1205–1213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Mabuchi (Department of Applied Physics, Stanford University) for technical support and D. Pavlichin for helping to create data analysis software. This work was funded by the US National Institutes of Health through grant GM49243 to D.H.

Author information

Authors and Affiliations

Authors

Contributions

S.V.S., M.G. and D.H. contributed to the experimental design and writing of the manuscript; M.G. performed the experiments; and M.G. and S.V.S. carried out data analysis.

Corresponding author

Correspondence to Daniel Herschlag.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Methods and Supplementary Note (PDF 286 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomatin, S., Greenfeld, M. & Herschlag, D. Implications of molecular heterogeneity for the cooperativity of biological macromolecules. Nat Struct Mol Biol 18, 732–734 (2011). https://doi.org/10.1038/nsmb.2052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing