Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins

Abstract

We describe a phage display methodology for engineering synthetic antigen binders (sABs) that recognize either the apo or the ligand-bound conformation of maltose-binding protein (MBP). sABs that preferentially recognize the maltose-bound form of MBP act as positive allosteric effectors by substantially increasing the affinity for maltose. A crystal structure of a sAB bound to the closed form of MBP reveals the basis for this allosteric effect. We show that sABs that recognize the bound form of MBP can rescue the function of a binding-deficient mutant by restoring its natural affinity for maltose. Furthermore, the sABs can enhance maltose binding in vivo, as they provide a growth advantage to bacteria under low-maltose conditions. The results demonstrate that structure-specific sABs can be engineered to dynamically control ligand-binding affinities by modulating the transition between different conformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phage display selection strategy.
Figure 2: Influence of sABs on maltose binding.
Figure 3: Scatchard analysis of maltose binding.
Figure 4: Crystal structure of MBP–MCS2 complex.
Figure 5: The 'wedge' formed by the CDR loops of MCS2.
Figure 6: Rescuing binding function of an MBP mutant.
Figure 7: Allosteric activity of sABs in vivo. Escherichia coli cells expressing sABs in the periplasm were grown in minimal media containing maltose as the sole carbon source.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Murphy, P.M., Bolduc, J.M., Gallaher, J.L., Stoddard, B.L. & Baker, D. Alteration of enzyme specificity by computational loop remodeling and design. Proc. Natl. Acad. Sci. USA 106, 9215–9220 (2009).

    Article  CAS  Google Scholar 

  2. Bowerman, N.A. et al. Engineering the binding properties of the T cell receptor:peptide:MHC ternary complex that governs T cell activity. Mol. Immunol. 46, 3000–3008 (2009).

    Article  CAS  Google Scholar 

  3. Lowman, H.B. & Wells, J.A. Affinity maturation of human growth hormone by monovalent phage display. J. Mol. Biol. 234, 564–578 (1993).

    Article  CAS  Google Scholar 

  4. Monod, J., Wyman, J. & Changeux, J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  5. Koshland, D.E. Jr., Nemethy, G. & Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365–385 (1966).

    Article  CAS  Google Scholar 

  6. Du, X. et al. Long range propagation of conformational changes in integrin α IIb β 3. J. Biol. Chem. 268, 23087–23092 (1993).

    CAS  PubMed  Google Scholar 

  7. Kimura, T., Imai, Y. & Irimura, T. Calcium-dependent conformation of a mouse macrophage calcium-type lectin. Carbohydrate binding activity is stabilized by an antibody specific for a calcium-dependent epitope. J. Biol. Chem. 270, 16056–16062 (1995).

    Article  CAS  Google Scholar 

  8. Medintz, I.L. & Deschamps, J.R. Maltose-binding protein: a versatile platform for prototyping biosensing. Curr. Opin. Biotechnol. 17, 17–27 (2006).

    Article  CAS  Google Scholar 

  9. Oldham, M.L., Khare, D., Quiocho, F.A., Davidson, A.L. & Chen, J. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521 (2007).

    Article  CAS  Google Scholar 

  10. Oldham, M.L., Davidson, A.L. & Chen, J. Structural insights into ABC transporter mechanism. Curr. Opin. Struct. Biol. 18, 726–733 (2008).

    Article  CAS  Google Scholar 

  11. Quiocho, F.A., Spurlino, J.C. & Rodseth, L.E. Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. Structure 5, 997–1015 (1997).

    Article  CAS  Google Scholar 

  12. Sharff, A.J., Rodseth, L.E., Spurlino, J.C. & Quiocho, F.A. Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. Biochemistry 31, 10657–10663 (1992).

    Article  CAS  Google Scholar 

  13. Evenäs, J. et al. Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy. J. Mol. Biol. 309, 961–974 (2001).

    Article  Google Scholar 

  14. Rizk, S.S. et al. An engineered substance P variant for receptor-mediated delivery of synthetic antibodies into tumor cells. Proc. Natl. Acad. Sci. USA 106, 11011–11015 (2009).

    Article  CAS  Google Scholar 

  15. Uysal, S. et al. Crystal structure of full-length KcsA in its closed conformation. Proc. Natl. Acad. Sci. USA 106, 6644–6649 (2009).

    Article  CAS  Google Scholar 

  16. Ye, J.D. et al. Synthetic antibodies for specific recognition and crystallization of structured RNA. Proc. Natl. Acad. Sci. USA 105, 82–87 (2008).

    Article  CAS  Google Scholar 

  17. Fellouse, F.A. et al. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J. Mol. Biol. 373, 924–940 (2007).

    Article  CAS  Google Scholar 

  18. Marvin, J.S. et al. The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. Proc. Natl. Acad. Sci. USA 94, 4366–4371 (1997).

    Article  CAS  Google Scholar 

  19. de Lorimier, R.M. et al. Construction of a fluorescent biosensor family. Protein Sci. 11, 2655–2675 (2002).

    Article  CAS  Google Scholar 

  20. Scatchard, G. The attractions of proteins for small molecules and ions. Ann. NY Acad. Sci. 51, 660–672 (1949).

    Article  CAS  Google Scholar 

  21. Hammes, G.G. Thermodynamics and Kinetics for the Biological Sciences (Wiley, 2000).

  22. Sharff, A.J., Rodseth, L.E. & Quiocho, F.A. Refined 1.8-Å structure reveals the mode of binding of β-cyclodextrin to the maltodextrin binding protein. Biochemistry 32, 10553–10559 (1993).

    Article  CAS  Google Scholar 

  23. Koide, A., Gilbreth, R.N., Esaki, K., Tereshko, V. & Koide, S. High-affinity single-domain binding proteins with a binary-code interface. Proc. Natl. Acad. Sci. USA 104, 6632–6637 (2007).

    Article  CAS  Google Scholar 

  24. Gould, A.D. & Shilton, B.H. Studies of the maltose transport system reveal a mechanism for coupling ATP hydrolysis to substrate translocation without direct recognition of substrate. J. Biol. Chem. 285, 11290–11296 (2010).

    Article  CAS  Google Scholar 

  25. Gao, J., Sidhu, S.S. & Wells, J.A. Two-state selection of conformation-specific antibodies. Proc. Natl. Acad. Sci. USA 106, 3071–3076 (2009).

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  27. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  28. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  29. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  30. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  31. Painter, J. & Merritt, E.A. A molecular viewer for the analysis of TLS rigid-body motion in macromolecules. Acta Crystallogr. D Biol. Crystallogr. 61, 465–471 (2005).

    Article  Google Scholar 

  32. Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439–450 (2006).

    Article  Google Scholar 

  33. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001).

    Article  CAS  Google Scholar 

  34. Lamzin,, V., Perrakis, A. & Wilson, K. The ARP/WARP suite for automated construction and refinement of protein models. in Crystallography of Biological Macromolecules, Vol. F (eds. Rossmann, M. & Arnold, E.) 720–722 (Kluwer Academic, 2001).

  35. DeLano, W. The PyMOL Molecular Graphics System 0.99 edn (DeLano Scientific LLC, 2008).

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants GM 072688 and F32DK080619-02 (to S.S.R.). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (grant 085P1000817). The authors thank A. Koide (University of Chicago) for providing the phage library.

Author information

Authors and Affiliations

Authors

Contributions

S.S.R. and A.A.K. designed the experiments and wrote the manuscript; S.S.R., M.P., J.H.H., E.M.D. and A.S. performed the experiments; E.M.D. solved the crystal structure.

Corresponding author

Correspondence to Anthony A Kossiakoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizk, S., Paduch, M., Heithaus, J. et al. Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins. Nat Struct Mol Biol 18, 437–442 (2011). https://doi.org/10.1038/nsmb.2002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2002

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research