Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme

Abstract

Allostery has been studied for many decades, yet it remains challenging to determine experimentally how it occurs at a molecular level. We have developed an approach combining isothermal titration calorimetry, circular dichroism and nuclear magnetic resonance spectroscopy to quantify allostery in terms of protein thermodynamics, structure and dynamics. This strategy was applied to study the interaction between aminoglycoside N-(6′)-acetyltransferase-Ii and one of its substrates, acetyl coenzyme A. It was found that homotropic allostery between the two active sites of the homodimeric enzyme is modulated by opposing mechanisms. One follows a classical Koshland-Némethy-Filmer (KNF) paradigm, whereas the other follows a recently proposed mechanism in which partial unfolding of the subunits is coupled to ligand binding. Competition between folding, binding and conformational changes represents a new way to govern energetic communication between binding sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of homotropic allosteric models for a dimeric protein.
Figure 2: Temperature dependence of AAC(6′)-Ii binding thermodynamics and secondary structure.
Figure 3: Changes in AAC(6′)-Ii 800 MHz NMR spectra produced by AcCoA binding.
Figure 4: Analysis of NMR titration data.
Figure 5: Schematic representation of the allosteric binding model.
Figure 6: Dependence of the apparent cooperativity coefficient (αapp) on subunit instability (KU0 = [UF]/[FF]).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Perutz, M.F. Mechanisms of cooperativity and allosteric regulation in proteins. Q. Rev. Biophys. 22, 139–237 (1989).

    Article  CAS  Google Scholar 

  2. Monod, J., Wyman, J. & Changeux, J.P. On nature of allosteric transitions—a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  3. Fenton, A.W. Allostery: an illustrated definition for the 'second secret of life'. Trends Biochem. Sci. 33, 420–425 (2008).

    Article  CAS  Google Scholar 

  4. DeDecker, B.S. Allosteric drugs: thinking outside the active-site box. Chem. Biol. 7, R103–R107 (2000).

    Article  CAS  Google Scholar 

  5. Koshland, D.E., Nemethy, G. & Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365–385 (1966).

    Article  CAS  Google Scholar 

  6. Perutz, M.F., Wilkinson, A.J., Paoli, M. & Dodson, G.G. The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu. Rev. Biophys. Biomol. Struct. 27, 1–34 (1998).

    Article  CAS  Google Scholar 

  7. Helmstaedt, K., Krappmann, S. & Braus, G.H. Allosteric regulation of catalytic activity: Escherichia coli aspartate transcarbamoylase versus yeast chorismate mutase. Microbiol. Mol. Biol. Rev. 65, 404–421 (2001).

    Article  CAS  Google Scholar 

  8. Cui, Q. & Karplus, M. Allostery and cooperativity revisited. Protein Sci. 17, 1295–1307 (2008).

    Article  CAS  Google Scholar 

  9. Kern, D. & Zuiderweg, E.R.P. The role of dynamics in allosteric regulation. Curr. Opin. Struct. Biol. 13, 748–757 (2003).

    Article  CAS  Google Scholar 

  10. Hilser, V.J. & Thompson, E.B. Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc. Natl. Acad. Sci. USA 104, 8311–8315 (2007).

    Article  CAS  Google Scholar 

  11. Reichheld, S.E., Yu, Z. & Davidson, A.R. The induction of folding cooperativity by ligand binding drives the allosteric response of tetracycline repressor. Proc. Natl. Acad. Sci. USA 106, 22263–22268 (2009).

    Article  CAS  Google Scholar 

  12. Popovych, N., Sun, S.J., Ebright, R.H. & Kalodimos, C.G. Dynamically driven protein allostery. Nat. Struct. Mol. Biol. 13, 831–838 (2006).

    Article  CAS  Google Scholar 

  13. Cooper, A. & Dryden, D.T.F. Allostery without conformational change—a plausible model. Eur. Biophys. J. 11, 103–109 (1984).

    Article  CAS  Google Scholar 

  14. Tzeng, S.R. & Kalodimos, C.G. Dynamic activation of an allosteric regulatory protein. Nature 462, 368–372 (2009).

    Article  CAS  Google Scholar 

  15. Gandhi, P.S., Chen, Z.W., Mathews, F.S. & Di Cera, E. Structural identification of the pathway of long-range communication in an allosteric enzyme. Proc. Natl. Acad. Sci. USA 105, 1832–1837 (2008).

    Article  CAS  Google Scholar 

  16. Lockless, S.W. & Ranganathan, R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299 (1999).

    Article  CAS  Google Scholar 

  17. Tsai, C.J., Kumar, S., Ma, B.Y. & Nussinov, R. Folding funnels, binding funnels, and protein function. Protein Sci. 8, 1181–1190 (1999).

    Article  CAS  Google Scholar 

  18. Tsai, C.J., Ma, B.Y. & Nussinov, R. Folding and binding cascades: shifts in energy landscapes. Proc. Natl. Acad. Sci. USA 96, 9970–9972 (1999).

    Article  CAS  Google Scholar 

  19. Kumar, S., Ma, B.Y., Tsai, C.J., Sinha, N. & Nussinov, R. Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci. 9, 10–19 (2000).

    Article  CAS  Google Scholar 

  20. Pan, H., Lee, J.C. & Hilser, V.J. Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble. Proc. Natl. Acad. Sci. USA 97, 12020–12025 (2000).

    Article  CAS  Google Scholar 

  21. Volkman, B.F., Lipson, D., Wemmer, D.E. & Kern, D. Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429–2433 (2001).

    Article  CAS  Google Scholar 

  22. Gunasekaran, K., Ma, B.Y. & Nussinov, R. Is allostery an intrinsic property of all dynamic proteins? Proteins 57, 433–443 (2004).

    Article  CAS  Google Scholar 

  23. Clarkson, M.W., Gilmore, S.A., Edgell, M.H. & Lee, A.L. Dynamic coupling and allosteric behavior in a nonallosteric protein. Biochemistry 45, 7693–7699 (2006).

    Article  CAS  Google Scholar 

  24. Wright, G.D. & Ladak, P. Overexpression and characterization of the chromosomal aminoglycoside 6′-N-acetyltransferase from Enterococcus faecium. Antimicrob. Agents Chemother. 41, 956–960 (1997).

    Article  CAS  Google Scholar 

  25. Burk, D.L., Xiong, B., Breitbach, C. & Berghuis, A.M. Structures of aminoglycoside acetyltransferase AAC(6′)-Ii in a novel crystal form: structural and normal-mode analyses. Acta Crystallogr. D Biol. Crystallogr. 61, 1273–1279 (2005).

    Article  Google Scholar 

  26. Wybenga-Groot, L.E., Draker, K.-a., Wright, G.D. & Berghuis, A.M. Crystal structure of an aminoglycoside 6′-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Structure 7, 497–507 (1999).

    Article  CAS  Google Scholar 

  27. Burk, D.L., Ghuman, N., Wybenga-Groot, L.E. & Berghuis, A.M. X-ray structure of the AAC(6′)-Ii antibiotic resistance enzyme at 1.8 angstrom resolution; examination of oligomeric arrangements in GNAT superfamily members. Protein Sci. 12, 426–437 (2003).

    Article  CAS  Google Scholar 

  28. Gao, F., Yan, X.X., Baettig, O.M., Berghuis, A.M. & Auclair, K. Regio- and chemoselective 6′-N-derivatization of aminoglycosides: bisubstrate inhibitors as probes to study aminoglycoside 6′-N-acetyltransferases. Angew. Chem. Int. Edn Engl. 44, 6859–6862 (2005).

    Article  CAS  Google Scholar 

  29. Freiburger, L.A., Auclair, K. & Mittermaier, A.K. Elucidating protein binding mechanisms by variable-c ITC. ChemBioChem 10, 2871–2873 (2009).

    Article  CAS  Google Scholar 

  30. Fisher, H.F., Colen, A.H. & Medary, R.T. Temperature-dependent ΔC p0 generated by a shift in equilibrium between macrostates of an enzyme. Nature 292, 271–272 (1981).

    Article  CAS  Google Scholar 

  31. Cliff, M.J., Williams, M.A., Brooke-Smith, J., Barford, D. & Ladbury, J.E. Molecular recognition via coupled folding and binding in a TPR domain. J. Mol. Biol. 346, 717–732 (2005).

    Article  CAS  Google Scholar 

  32. Keramisanou, D. et al. Disorder-order folding transitions underlie catalysis in the helicase motor of SecA. Nat. Struct. Mol. Biol. 13, 594–602 (2006).

    Article  CAS  Google Scholar 

  33. Adler, A.J., Greenfield, N.J. & Fasman, G.D. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol. 27, 675–735 (1973).

    Article  CAS  Google Scholar 

  34. Saxena, V.P. & Wetlaufer, D.B. A New Basis for interpreting circular dichroic spectra of proteins. Proc. Natl. Acad. Sci. USA 68, 969–972 (1971).

    Article  CAS  Google Scholar 

  35. Uversky, V.N. Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11, 739–756 (2002).

    Article  CAS  Google Scholar 

  36. Farrow, N.A., Zhang, O., Forman-Kay, J.D. & Kay, L.E. A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J. Biomol. NMR 4, 727–734 (1994).

    Article  CAS  Google Scholar 

  37. Farmer, B.T. Localizing the NADP(+) binding site on the MurB enzyme by NMR. Nat. Struct. Biol. 3, 995–997 (1996).

    Article  CAS  Google Scholar 

  38. Koshland, D.E. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA 44, 98–104 (1958).

    Article  CAS  Google Scholar 

  39. Foote, J. & Milstein, C. Conformational isomerism and the diversity of antibodies. Proc. Natl. Acad. Sci. USA 91, 10370–10374 (1994).

    Article  CAS  Google Scholar 

  40. Boehr, D.D., Nussinov, R. & Wright, P.E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).

    Article  CAS  Google Scholar 

  41. Koshland, D.E. & Hamadani, K. Proteomics and models for enzyme cooperativity. J. Biol. Chem. 277, 46841–46844 (2002).

    Article  CAS  Google Scholar 

  42. Bosshard, H.R. Molecular recognition by induced fit: how fit is the concept? News Physiol. Sci. 16, 171–173 (2001).

    CAS  PubMed  Google Scholar 

  43. Hammes, G.G., Chang, Y.C. & Oas, T.G. Conformational selection or induced fit: a flux description of reaction mechanism. Proc. Natl. Acad. Sci. USA 106, 13737–13741 (2009).

    Article  CAS  Google Scholar 

  44. Weikl, T.R. & von Deuster, C. Selected-fit versus induced-fit protein binding: kinetic differences and mutational analysis. Proteins 75, 104–110 (2009).

    Article  CAS  Google Scholar 

  45. Radley, T.L., Markowska, A.I., Bettinger, B.T., Ha, J.H. & Loh, S.N. Allosteric switching by mutually exclusive folding of protein domains. J. Mol. Biol. 332, 529–536 (2003).

    Article  CAS  Google Scholar 

  46. Laine, O., Streaker, E.D., Nabavi, M., Fenselau, C.C. & Beckett, D. Allosteric signaling in the biotin repressor occurs via local folding coupled to global dampening of protein dynamics. J. Mol. Biol. 381, 89–101 (2008).

    Article  CAS  Google Scholar 

  47. Ehlert, F.J. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol. Pharmacol. 33, 187–194 (1988).

    CAS  PubMed  Google Scholar 

  48. Marley, J., Lu, M. & Bracken, C. A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 20, 71–75 (2001).

    Article  CAS  Google Scholar 

  49. Cavanagh, J., Fairbrother, W., Palmer, A. & Skelton, N. Protein NMR Spectroscopy Principles and Practice (Academic Press, Inc., 1996).

  50. Kay, L.E., Keifer, P. & Saarinen, T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10663–10665 (1992).

    Article  CAS  Google Scholar 

  51. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank G.D. Wright (McMaster University) for providing the AAC(6′)-Ii expression construct, as well as C.E. Ang and K. Shopsowitz for their assistance with data collection and analysis. This research was funded by operating grants from the Canadian Institutes of Health Research (CIHR) (K.A., A.K.M. and A.M.B.). L.A.F. and O.M.B. were supported through a CIHR training grant and CIHR scholarship, respectively. A.M.B. holds a Canada Research Chair in Structural Biology. A.M.B. and A.K.M. are supported by the Groupe de Recherche Axé sur la Structure des Protéines (GRASP). NMR experiments were recorded at the Québec/Eastern Canada High Field NMR Facility, supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, the Ministère de la Recherche, de la Science et de la Technologie du Québec, and McGill University.

Author information

Authors and Affiliations

Authors

Contributions

L.A.F. and O.M.B. collected the data. L.A.F., O.M.B. and T.S. analyzed the data. A.K.M., K.A. and A.M.B. wrote the paper.

Corresponding author

Correspondence to Anthony K Mittermaier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Methods (PDF 799 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freiburger, L., Baettig, O., Sprules, T. et al. Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme. Nat Struct Mol Biol 18, 288–294 (2011). https://doi.org/10.1038/nsmb.1978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing