Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA

Abstract

Individuals with BRCA2 mutations are predisposed to breast cancers owing to genome instability. To determine the functions of BRCA2, the human protein was purified. It was found to bind selectively to single-stranded DNA (ssDNA), and to ssDNA in tailed duplexes and replication fork structures. Monomeric and dimeric forms of BRCA2 were observed by EM. BRCA2 directed the binding of RAD51 recombinase to ssDNA, reduced the binding of RAD51 to duplex DNA and stimulated RAD51-mediated DNA strand exchange. These observations provide a molecular basis for the role of BRCA2 in the maintenance of genome stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purified BRCA2 binds specifically to ssDNA.
Figure 2: Binding of BRCA2 to tailed duplex DNA.
Figure 3: BRCA2 targets RAD51 to ssDNA and stimulates DNA strand exchange.

Similar content being viewed by others

References

  1. Moynahan, M.E. & Jasin, M. Nat. Rev. Mol. Cell Biol. 11, 196–207 (2010).

    Article  CAS  Google Scholar 

  2. Bork, P., Blomberg, N. & Nilges, M. Nat. Genet. 13, 22–23 (1996).

    Article  CAS  Google Scholar 

  3. Thorslund, T., Esashi, F. & West, S.C. EMBO J. 26, 2915–2922 (2007).

    Article  CAS  Google Scholar 

  4. Yang, H. et al. Science 297, 1837–1848 (2002).

    Article  CAS  Google Scholar 

  5. Esashi, F. et al. Nature 434, 598–604 (2005).

    Article  CAS  Google Scholar 

  6. Ayoub, N. et al. Curr. Biol. 19, 1075–1085 (2009).

    Article  CAS  Google Scholar 

  7. Yang, H., Li, Q., Holloman, W.K. & Pavletich, N.P. Nature 433, 653–657 (2005).

    Article  CAS  Google Scholar 

  8. Petalcorin, M.I.R., Sandall, J., Wigley, D.B. & Boulton, S.J. J. Mol. Biol. 361, 231–242 (2006).

    Article  CAS  Google Scholar 

  9. Shivji, M.K.K. et al. Nucleic Acids Res. 34, 4000–4011 (2006).

    Article  CAS  Google Scholar 

  10. Shivji, M.K.K. et al. Proc. Natl. Acad. Sci. USA 106, 13254–13259 (2009).

    Article  CAS  Google Scholar 

  11. Carreira, A. et al. Cell 136, 1032–1043 (2009).

    Article  CAS  Google Scholar 

  12. Tal, A., Arbel-Goren, R. & Stavans, J. J. Mol. Biol. 393, 1007–1012 (2009).

    Article  CAS  Google Scholar 

  13. Lekomtsev, S., Guizetti, J., Pozniakovsky, A., Gerlich, D.W. & Petronczki, M. J. Cell Sci. 123, 1395–1400 (2010).

    Article  CAS  Google Scholar 

  14. Sy, S.M.H., Huen, M.S.Y. & Chen, J.J. Proc. Natl. Acad. Sci. USA 106, 7155–7160 (2009).

    Article  CAS  Google Scholar 

  15. Benson, F.E., Stasiak, A. & West, S.C. EMBO J. 13, 5764–5771 (1994).

    Article  CAS  Google Scholar 

  16. Zhou, Q. et al. Mol. Cell. Biol. 27, 2512–2526 (2007).

    Article  CAS  Google Scholar 

  17. Shin, D.S. et al. EMBO J. 22, 4566–4576 (2003).

    Article  CAS  Google Scholar 

  18. Gasior, S.L. et al. Proc. Natl. Acad. Sci. USA 98, 8411–8418 (2001).

    Article  CAS  Google Scholar 

  19. Song, B.W. & Sung, P. J. Biol. Chem. 275, 15895–15904 (2000).

    Article  CAS  Google Scholar 

  20. Sugiyama, T. & Kowalczykowski, S.C. J. Biol. Chem. 277, 31663–31672 (2002).

    Article  CAS  Google Scholar 

  21. de Vries, F.A.T. et al. DNA Repair (Amst.) 4, 1121–1128 (2005).

    Article  CAS  Google Scholar 

  22. Rijkers, T. et al. Mol. Cell. Biol. 18, 6423–6429 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Hyman (Max Planck Institute, Dresden) for providing the BAC modification cassettes. This work was supported by grants to S.C.W. (Cancer Research UK, the Breast Cancer Campaign, the Louis-Jeantet Foundation, Swiss Bridge and the European Research Council) and to J.D.G. and S.A.C. (US National Institutes of Health). T.T. was supported by the Alfred Benzon Foundation and the Carlsberg Foundation and S.L. by a European Molecular Biology Organization fellowship.

Author information

Authors and Affiliations

Authors

Contributions

T.T. and S.C.W. designed the study; S.L. and M.P. made the BRCA2 constructs; T.T. and M.J.M. made the RAD51 expression vectors, purified the proteins and carried out the biochemical analyses; and S.A.C. and J.D.G. visualized BRCA2 by electron microscopy. S.C.W. wrote the manuscript with contributions from T.T., S.A.C. and J.D.G.

Corresponding author

Correspondence to Stephen C West.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 9002 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorslund, T., McIlwraith, M., Compton, S. et al. The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat Struct Mol Biol 17, 1263–1265 (2010). https://doi.org/10.1038/nsmb.1905

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1905

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer