Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms in signal transduction at the membrane

Subjects

Abstract

Signal transduction originates at the membrane, where the clustering of signaling proteins is a key step in transmitting a message. Membranes are difficult to study, and their influence on signaling is still only understood at the most rudimentary level. Recent advances in the biophysics of membranes, surveyed in this review, have highlighted a variety of phenomena that are likely to influence signaling activity, such as local composition heterogeneities and long-range mechanical effects. We discuss recent mechanistic insights into three signaling systems—Ras activation, Ephrin signaling and the control of actin nucleation—where the active role of membrane components is now appreciated and for which experimentation on the membrane is required for further understanding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of PKC at the membrane.
Figure 2: Self-organizing spiral waves formed by Min proteins on the membrane surface.
Figure 3: The activation of Ras by SOS.
Figure 4: EphA2 spatial mutation experiment.
Figure 5: Model for activation of the WAVE complex.

Similar content being viewed by others

References

  1. Bhattacharyya, R.P., Remenyi, A., Yeh, B.J. & Lim, W.A. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu. Rev. Biochem. 75, 655–680 (2006).

    CAS  PubMed  Google Scholar 

  2. Engelman, D.M. Membranes are more mosaic than fluid. Nature 438, 578–580 (2005).

    CAS  PubMed  Google Scholar 

  3. Scott, J.D. & Pawson, T. Cell signaling in space and time: where proteins come together and when they're apart. Science 326, 1220–1224 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hunter, T. Tyrosine phosphorylation: thirty years and counting. Curr. Opin. Cell Biol. 21, 140–146 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lemmon, M.A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111 (2008).

    CAS  PubMed  Google Scholar 

  6. Newton, A.C. Protein kinase C: poised to signal. Am. J. Physiol. Endocrinol. Metab. 298, E395–E402 (2010).

    CAS  PubMed  Google Scholar 

  7. Newton, A.C. Lipid activation of protein kinases. J. Lipid Res. 50 Suppl, S266–S271 (2009).

    PubMed  PubMed Central  Google Scholar 

  8. Rosse, C. et al. PKC and the control of localized signal dynamics. Nat. Rev. Mol. Cell Biol. 11, 103–112 (2010).

    CAS  PubMed  Google Scholar 

  9. Prehoda, K.E., Scott, J.A., Mullins, R.D. & Lim, W.A. Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290, 801–806 (2000).

    CAS  PubMed  Google Scholar 

  10. McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP(2) and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175 (2002).

    CAS  PubMed  Google Scholar 

  11. Gambhir, A. et al. Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins. Biophys. J. 86, 2188–2207 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kholodenko, B.N., Hoek, J.B. & Westerhoff, H.V. Why cytoplasmic signalling proteins should be recruited to cell membranes. Trends Cell Biol. 10, 173–178 (2000).

    CAS  PubMed  Google Scholar 

  13. Jung, H., Robison, A.D. & Cremer, P.S. Multivalent ligand-receptor binding on supported lipid bilayers. J. Struct. Biol. 168, 90–94 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K. & Schwille, P. Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320, 789–792 (2008).

    CAS  PubMed  Google Scholar 

  15. Weiner, O.D., Marganski, W.A., Wu, L.F., Altschuler, S.J. & Kirschner, M.W. An actin-based wave generator organizes cell motility. PLoS Biol. 5, e221 (2007).

    PubMed  PubMed Central  Google Scholar 

  16. Qi, S.Y., Groves, J.T. & Chakraborty, A.K. Synaptic pattern formation during cellular recognition. Proc. Natl. Acad. Sci. USA 98, 6548–6553 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Manz, B.N. & Groves, J.T. Spatial organization and signal transduction at intercellular junctions. Nat. Rev. Mol. Cell Biol. 11, 342–352 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Huppa, J.B. et al. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463, 963–967 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464, 932–936 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mayor, S. & Rao, M. Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5, 231–240 (2004).

    CAS  PubMed  Google Scholar 

  21. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    CAS  PubMed  Google Scholar 

  22. Veatch, S.L. & Keller, S.L. Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89, 268101 (2002).

    PubMed  Google Scholar 

  23. Baumgart, T., Hess, S.T. & Webb, W.W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003).

    CAS  PubMed  Google Scholar 

  24. Kaizuka, Y. & Groves, J.T. Structure and dynamics of supported intermembrane junctions. Biophys. J. 86, 905–912 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Baumgart, T. et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. USA 104, 3165–3170 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Veatch, S.L. et al. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293 (2008).

    CAS  PubMed  Google Scholar 

  27. Groves, J.T., Boxer, S.G. & McConnell, H.M. Electric field effects in multicomponent fluid lipid membranes. J. Phys. Chem. B 104, 119–124 (2000).

    CAS  Google Scholar 

  28. Honerkamp-Smith, A.R., Veatch, S.L. & Keller, S.L. An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim. Biophys. Acta 1788, 53–63 (2009).

    CAS  PubMed  Google Scholar 

  29. Yamazaki, V., Sirenko, O., Schafer, R.J. & Groves, J.T. Lipid mobility and molecular binding in fluid lipid membranes. J. Am. Chem. Soc. 127, 2826–2827 (2005).

    CAS  PubMed  Google Scholar 

  30. Forstner, M.B., Yee, C.K., Parikh, A.N. & Groves, J.T. Lipid lateral mobility and membrane phase structure modulation by protein binding. J. Am. Chem. Soc. 128, 15221–15227 (2006).

    CAS  PubMed  Google Scholar 

  31. Hammond, A.T. et al. Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc. Natl. Acad. Sci. USA 102, 6320–6325 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, A.P. & Fletcher, D.A. Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys. J. 91, 4064–4070 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Groves, J.T., Boxer, S.G. & McConnell, H.M. Electric field-induced critical demixing in lipid bilayer membranes. Proc. Natl. Acad. Sci. USA 95, 935–938 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. de Meyer, F. & Smit, B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc. Natl. Acad. Sci. USA 106, 3654–3658 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ayton, G.S. & Voth, G.A. Systematic multiscale simulation of membrane protein systems. Curr. Opin. Struct. Biol. 19, 138–144 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Reynwar, B.J. et al. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447, 461–464 (2007).

    CAS  PubMed  Google Scholar 

  37. Lyman, E. et al. A role for a specific cholesterol interaction in stabilizing the Apo configuration of the human A(2A) adenosine receptor. Structure 17, 1660–1668 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmidt, D., Jiang, Q.X. & MacKinnon, R. Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444, 775–779 (2006).

    CAS  PubMed  Google Scholar 

  39. Phillips, R., Ursell, T., Wiggins, P. & Sens, P. Emerging roles for lipids in shaping membrane-protein function. Nature 459, 379–385 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Groves, J.T., Boxer, S.G. & McConnell, H.M. Lateral reorganization of fluid lipid membranes in response to the electric field produced by a buried charge. J. Phys. Chem. B 104, 11409–11415 (2000).

    CAS  Google Scholar 

  41. Saxton, M.J. & Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).

    CAS  PubMed  Google Scholar 

  42. Saffman, P.G. & Delbruck, M. Brownian motion in biological membranes. Proc. Natl. Acad. Sci. USA 72, 3111–3113 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005).

    CAS  PubMed  Google Scholar 

  44. Rozovsky, S., Kaizuka, Y. & Groves, J.T. Formation and spatio-temporal evolution of periodic structures in lipid bilayers. J. Am. Chem. Soc. 127, 36–37 (2005).

    CAS  PubMed  Google Scholar 

  45. Groves, J.T. Bending mechanics and molecular organization in biological membranes. Annu. Rev. Phys. Chem. 58, 697–717 (2007).

    CAS  PubMed  Google Scholar 

  46. Ursell, T.S., Klug, W.S. & Phillips, R. Morphology and interaction between lipid domains. Proc. Natl. Acad. Sci. USA 106, 13301–13306 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mouritsen, O.G. & Bloom, M. Mattress model of lipid-protein interactions in membranes. Biophys. J. 46, 141–153 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ursell, T., Huang, K.C., Peterson, E. & Phillips, R. Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLOS Comput. Biol. 3, e81 (2007).

    PubMed  PubMed Central  Google Scholar 

  49. Parthasarathy, R., Yu, C.H. & Groves, J.T. Curvature-modulated phase separation in lipid bilayer membranes. Langmuir 22, 5095–5099 (2006).

    CAS  PubMed  Google Scholar 

  50. Shaw, A.S. & Dustin, M.L. Making the T cell receptor go the distance: a topological view of T cell activation. Immunity 6, 361–369 (1997).

    CAS  PubMed  Google Scholar 

  51. Weikl, T.R., Groves, J.T. & Lipowsky, R. Pattern formation during adhesion of multicomponent membranes. Europhys. Lett. 59, 916–922 (2002).

    CAS  Google Scholar 

  52. Campi, G., Varma, R. & Dustin, M.L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6, 1253–1262 (2005).

    CAS  PubMed  Google Scholar 

  54. DeMond, A.L., Mossman, K.D., Starr, T., Dustin, M.L. & Groves, J.T. T cell receptor microcluster transport through molecular mazes reveals mechanism of translocation. Biophys. J. 94, 3286–3292 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lillemeier, B.F. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96 (2010).

    CAS  PubMed  Google Scholar 

  56. Henis, Y.I., Hancock, J.F. & Prior, I.A. Ras acylation, compartmentalization and signaling nanoclusters. Mol. Membr. Biol. (Review) 26, 80–92 (2009).

    CAS  PubMed  Google Scholar 

  57. Sourjik, V. & Berg, H.C. Functional interactions between receptors in bacterial chemotaxis. Nature 428, 437–441 (2004).

    CAS  PubMed  Google Scholar 

  58. Suzuki, K., Fujiwara, T.K., Sanematsu, F., Iino, R., Edidin, M. & Kusumi, A. GPI-anchored receptor clusters transiently recruit Lyn and Gα for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol. 177, 717–730 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Suzuki, K., Fujiwara, T.K., Edidin, M. & Kusumi, A. Dynamic recruitment of phospholipase Cγ at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J. Cell Biol. 177, 731–742 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schlessinger, J. & Bar-Sagi, D. Activation of Ras and other signaling pathways by receptor tyrosine kinases. Cold Spring Harb. Symp. Quant. Biol. 59, 173–179 (1994).

    CAS  PubMed  Google Scholar 

  61. Downward, J. The GRB2/Sem-5 adaptor protein. FEBS Lett. 338, 113–117 (1994).

    CAS  PubMed  Google Scholar 

  62. Haugh, J.M. & Lauffenburger, D.A. Physical modulation of intracellular signaling processes by locational regulation. Biophys. J. 72, 2014–2031 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuriyan, J. & Eisenberg, D. The origin of protein interactions and allostery in colocalization. Nature 450, 983–990 (2007).

    CAS  PubMed  Google Scholar 

  64. McLaughlin, S. & Aderem, A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem. Sci. 20, 272–276 (1995).

    CAS  PubMed  Google Scholar 

  65. Margarit, S.M. et al. Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685–695 (2003).

    CAS  PubMed  Google Scholar 

  66. Boykevisch, S. et al. Regulation of ras signaling dynamics by Sos-mediated positive feedback. Curr. Biol. 16, 2173–2179 (2006).

    CAS  PubMed  Google Scholar 

  67. Gureasko, J. et al. Membrane-dependent signal integration by the Ras activator Son of sevenless. Nat. Struct. Mol. Biol. 15, 452–461 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sondermann, H. et al. Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 119, 393–405 (2004).

    CAS  PubMed  Google Scholar 

  69. Sondermann, H., Nagar, B., Bar-Sagi, D. & Kuriyan, J. Computational docking and solution x-ray scattering predict a membrane-interacting role for the histone domain of the Ras activator son of sevenless. Proc. Natl. Acad. Sci. USA 102, 16632–16637 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gureasko, J. et al. Role of the histone domain in the autoinhibition and activation of the Ras activator Son of Sevenless. Proc. Natl. Acad. Sci. USA 107, 3430–3435 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao, C., Du, G., Skowronek, K., Frohman, M.A. & Bar-Sagi, D. Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat. Cell Biol. 9, 706–712 (2007).

    CAS  PubMed  Google Scholar 

  72. Yadav, K.K. & Bar-Sagi, D. Allosteric gating of Son of sevenless activity by the histone domain. Proc. Natl. Acad. Sci. USA 107, 3436–3440 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, W. et al. The Grb2 binding domain of mSos1 is not required for downstream signal transduction. Nat. Genet. 10, 294–300 (1995).

    CAS  PubMed  Google Scholar 

  74. Corbalan-Garcia, S., Margarit, S.M., Galron, D., Yang, S.S. & Bar-Sagi, D. Regulation of Sos activity by intramolecular interactions. Mol. Cell. Biol. 18, 880–886 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tartaglia, M. & Gelb, B.D. Noonan syndrome and related disorders: genetics and pathogenesis. Annu. Rev. Genomics Hum. Genet. 6, 45–68 (2005).

    CAS  PubMed  Google Scholar 

  76. Roberts, A.E. et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat. Genet. 39, 70–74 (2007).

    CAS  PubMed  Google Scholar 

  77. Tartaglia, M. et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat. Genet. 39, 75–79 (2007).

    CAS  PubMed  Google Scholar 

  78. Plowman, S.J., Muncke, C., Parton, R.G. & Hancock, J.F. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc. Natl. Acad. Sci. USA 102, 15500–15505 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Abankwa, D. et al. A novel switch region regulates H-ras membrane orientation and signal output. EMBO J. 27, 727–735 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tian, T. et al. Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nat. Cell Biol. 9, 905–914 (2007).

    CAS  PubMed  Google Scholar 

  81. Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461, 542–545 (2009).

    CAS  PubMed  Google Scholar 

  82. Das, J. et al. Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell 136, 337–351 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Prasad, A. et al. Origin of the sharp boundary that discriminates positive and negative selection of thymocytes. Proc. Natl. Acad. Sci. USA 106, 528–533 (2009).

    CAS  PubMed  Google Scholar 

  84. Kullander, K. & Klein, R. Mechanisms and functions of Eph and ephrin signalling. Nat. Rev. Mol. Cell Biol. 3, 475–486 (2002).

    CAS  PubMed  Google Scholar 

  85. Wykosky, J. & Debinski, W. The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol. Cancer Res. 6, 1795–1806 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Salaita, K. et al. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 327, 1380–1385 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mossman, K.D., Campi, G., Groves, J.T. & Dustin, M.L. Altered TCR signaling from geometrically repatterned immunological synapses. Science 310, 1191–1193 (2005).

    CAS  PubMed  Google Scholar 

  88. Groves, J.T. Spatial mutation of the T cell immunological synapse. Curr. Opin. Chem. Biol. 10, 544–550 (2006).

    CAS  PubMed  Google Scholar 

  89. Castellana, E.T., Kataoka, S., Albertorio, F. & Cremer, P.S. Direct writing of metal nanoparticle films inside sealed microfluidic channels. Anal. Chem. 78, 107–112 (2006).

    CAS  PubMed  Google Scholar 

  90. Groves, J.T., Ulman, N. & Boxer, S.G. Micropatterning fluid lipid bilayers on solid supports. Science 275, 651–653 (1997).

    CAS  PubMed  Google Scholar 

  91. Ridley, A.J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    CAS  PubMed  Google Scholar 

  92. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    CAS  PubMed  Google Scholar 

  93. Pollard, T.D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477 (2007).

    CAS  PubMed  Google Scholar 

  94. Stradal, T.E. et al. Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol. 14, 303–311 (2004).

    CAS  PubMed  Google Scholar 

  95. Takenawa, T. & Suetsugu, S. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat. Rev. Mol. Cell Biol. 8, 37–48 (2007).

    CAS  PubMed  Google Scholar 

  96. Leung, D.W. & Rosen, M.K. The nucleotide switch in Cdc42 modulates coupling between the GTPase-binding and allosteric equilibria of Wiskott-Aldrich syndrome protein. Proc. Natl. Acad. Sci. USA 102, 5685–5690 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Papayannopoulos, V. et al. A polybasic motif allows N-WASP to act as a sensor of PIP(2) density. Mol. Cell 17, 181–191 (2005).

    CAS  PubMed  Google Scholar 

  98. Padrick, S.B. et al. Hierarchical regulation of WASP/WAVE proteins. Mol. Cell 32, 426–438 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Machesky, L.M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl. Acad. Sci. USA 96, 3739–3744 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ismail, A.M., Padrick, S.B., Chen, B., Umetani, J. & Rosen, M.K. The WAVE regulatory complex is inhibited. Nat. Struct. Mol. Biol. 16, 561–563 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Derivery, E., Lombard, B., Loew, D. & Gautreau, A. The Wave complex is intrinsically inactive. Cell Motil. Cytoskeleton 66, 777–790 (2009).

    CAS  PubMed  Google Scholar 

  102. Lebensohn, A.M. & Kirschner, M.W. Activation of the WAVE complex by coincident signals controls actin assembly. Mol. Cell 36, 512–524 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratories and our collaborators for many stimulating discussions and for sharing their insights into the topics described here.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jay T Groves or John Kuriyan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groves, J., Kuriyan, J. Molecular mechanisms in signal transduction at the membrane. Nat Struct Mol Biol 17, 659–665 (2010). https://doi.org/10.1038/nsmb.1844

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1844

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing