Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role for the MOV10 RNA helicase in Polycomb-mediated repression of the INK4a tumor suppressor

Abstract

Several lines of evidence point to a role for noncoding RNA in transcriptional repression by Polycomb group (PcG) proteins, but the precise mechanism remains unclear. Here we show that human MOV10, a putative RNA helicase previously implicated in post-transcriptional gene silencing, co-purifies and interacts with components of Polycomb-repressive complex 1 (PRC1) from human cells. Endogenous human MOV10 is mostly nuclear, and a proportion associates with chromatin in an RNA-dependent manner. Small hairpin RNA (shRNA)-mediated knockdown of MOV10 in human fibroblasts leads to the upregulation of the INK4a tumor suppressor, a known target of PcG-mediated repression, accompanied by the dissociation of PRC1 proteins from the locus and a reduction in trimethylation of histone H3 on Lys27 (H3K27me3). As well as prompting reassessment of MOV10's role in other settings, our findings suggest that it is directly involved in transcriptional silencing by PcG complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of MOV10 with CBX7.
Figure 2: MOV10 is predominantly nuclear and associated with chromatin.
Figure 3: MOV10 co-precipitates with multiple PRC1 components.
Figure 4: MOV10 contributes to the regulation of INK4a in primary fibroblasts.
Figure 5: MOV10 contributes to the transcriptional repression of INK4a by the Pc proteins.
Figure 6: Lack of interaction between MOV10 and PRC2 components.

Similar content being viewed by others

References

  1. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004).

    Article  CAS  Google Scholar 

  2. Schwartz, Y.B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8, 9–22 (2007).

    Article  CAS  Google Scholar 

  3. Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer 6, 846–856 (2006).

    Article  CAS  Google Scholar 

  4. Whitcomb, S.J., Basu, A., Allis, C.D. & Bernstein, E. Polycomb group proteins: an evolutionary perspective. Trends Genet. 23, 494–502 (2007).

    Article  CAS  Google Scholar 

  5. Gil, J. & Peters, G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat. Rev. Mol. Cell Biol. 7, 667–677 (2006).

    Article  CAS  Google Scholar 

  6. Maertens, G.N. et al. Several distinct polycomb complexes regulate and co-localize on the INK4a tumor suppressor locus. PLoS One 4, e6380 (2009).

    Article  Google Scholar 

  7. Ringrose, L. & Paro, R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134, 223–232 (2007).

    Article  CAS  Google Scholar 

  8. Sing, A. et al. A vertebrate polycomb response element governs segmentation of the posterior hindbrain. Cell 138, 885–897 (2009).

    Article  CAS  Google Scholar 

  9. Mercer, T.R., Dinger, M.E. & Mattick, J.S. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155–159 (2009).

    Article  CAS  Google Scholar 

  10. Wilusz, J.E., Sunwoo, H. & Spector, D.L. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 23, 1494–1504 (2009).

    Article  CAS  Google Scholar 

  11. Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J. & Lee, J.T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  Google Scholar 

  12. Pandey, R.R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    Article  CAS  Google Scholar 

  13. Rinn, J.L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  Google Scholar 

  14. Khalil, A.M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106, 11667–11672 (2009).

    Article  CAS  Google Scholar 

  15. Grimaud, C. et al. RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124, 957–971 (2006).

    Article  CAS  Google Scholar 

  16. Petruk, S. et al. Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 127, 1209–1221 (2006).

    Article  CAS  Google Scholar 

  17. Sanchez-Elsner, T., Gou, D., Kremmer, E. & Sauer, F. Noncoding RNAs of trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science 311, 1118–1123 (2006).

    Article  CAS  Google Scholar 

  18. Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev. 19, 697–708 (2005).

    Article  CAS  Google Scholar 

  19. Kim, D.H., Saetrom, P., Snove, O. Jr. & Rossi, J.J. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl. Acad. Sci. USA 105, 16230–16235 (2008).

    Article  CAS  Google Scholar 

  20. Kim, D.H., Villeneuve, L.M., Morris, K.V. & Rossi, J.J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat. Struct. Mol. Biol. 13, 793–797 (2006).

    Article  CAS  Google Scholar 

  21. Weinberg, M.S. et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 12, 256–262 (2006).

    Article  CAS  Google Scholar 

  22. Bracken, A.P., Dietrich, N., Pasini, D., Hansen, K.H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    Article  CAS  Google Scholar 

  23. Lee, T.I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  Google Scholar 

  24. Boyer, L.A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  Google Scholar 

  25. Tolhuis, B. et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat. Genet. 38, 694–699 (2006).

    Article  CAS  Google Scholar 

  26. Kim, W.Y. & Sharpless, N.E. The regulation of INK4/ARF in cancer and aging. Cell 127, 265–275 (2006).

    Article  CAS  Google Scholar 

  27. Campisi, J. & D'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).

    Article  CAS  Google Scholar 

  28. Jacobs, J.J., Kieboom, K., Marino, S., DePinho, R.A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    Article  CAS  Google Scholar 

  29. Brookes, S., Rowe, J., Gutierrez Del Arroyo, A., Bond, J. & Peters, G. Contribution of p16(INK4a) to replicative senescence of human fibroblasts. Exp. Cell Res. 298, 549–559 (2004).

    Article  CAS  Google Scholar 

  30. Dietrich, N. et al. Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. EMBO J. 26, 1637–1648 (2007).

    Article  CAS  Google Scholar 

  31. Itahana, K. et al. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell. Biol. 23, 389–401 (2003).

    Article  CAS  Google Scholar 

  32. Gil, J., Bernard, D., Martinez, D. & Beach, D. Polycomb CBX7 has a unifying role in cellular lifespan. Nat. Cell Biol. 6, 67–72 (2004).

    Article  CAS  Google Scholar 

  33. Mooslehner, K., Muller, U., Karls, U., Hamann, L. & Harbers, K. Structure and expression of a gene encoding a putative GTP-binding protein identified by provirus integration in a transgenic mouse strain. Mol. Cell. Biol. 11, 886–893 (1991).

    Article  CAS  Google Scholar 

  34. Cook, H.A., Koppetsch, B.S., Wu, J. & Theurkauf, W.E. The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell 116, 817–829 (2004).

    Article  CAS  Google Scholar 

  35. Dalmay, T., Horsefield, R., Braunstein, T.H. & Baulcombe, D.C. SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J. 20, 2069–2078 (2001).

    Article  CAS  Google Scholar 

  36. Tomari, Y. et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116, 831–841 (2004).

    Article  CAS  Google Scholar 

  37. Chendrimada, T.P. et al. MicroRNA silencing through RISC recruitment of eIF6. Nature 447, 823–828 (2007).

    Article  CAS  Google Scholar 

  38. Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).

    Article  CAS  Google Scholar 

  39. Wulczyn, F.G. et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J. 21, 415–426 (2007).

    Article  CAS  Google Scholar 

  40. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  41. Sanchez, C. et al. Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol. Cell. Proteomics 6, 820–834 (2007).

    Article  CAS  Google Scholar 

  42. Trinkle-Mulcahy, L. et al. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J. Cell Biol. 183, 223–239 (2008).

    Article  CAS  Google Scholar 

  43. Hock, J. et al. Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep. 8, 1052–1060 (2007).

    Article  Google Scholar 

  44. Bernstein, E. et al. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell. Biol. 26, 2560–2569 (2006).

    Article  CAS  Google Scholar 

  45. Yisraeli, J.K. VICKZ proteins: a multi-talented family of regulatory RNA-binding proteins. Biol. Cell 97, 87–96 (2005).

    Article  CAS  Google Scholar 

  46. Haussecker, D. et al. Capped small RNAs and MOV10 in human hepatitis δ virus replication. Nat. Struct. Mol. Biol. 15, 714–721 (2008).

    Article  CAS  Google Scholar 

  47. Wysocka, J., Reilly, P.T. & Herr, W. Loss of HCF-1-chromatin association precedes temperature-induced growth arrest of tsBN67 cells. Mol. Cell. Biol. 21, 3820–3829 (2001).

    Article  CAS  Google Scholar 

  48. Brookes, S. et al. INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence. EMBO J. 21, 2936–2945 (2002).

    Article  CAS  Google Scholar 

  49. Bracken, A.P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    Article  CAS  Google Scholar 

  50. Klattenhoff, C. et al. Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev. Cell 12, 45–55 (2007).

    Article  CAS  Google Scholar 

  51. Josse, T. et al. Telomeric trans-silencing: an epigenetic repression combining RNA silencing and heterochromatin formation. PLoS Genet. 3, 1633–1643 (2007).

    Article  CAS  Google Scholar 

  52. Nakano, M. et al. MOV10 as a novel telomerase-associated protein. Biochem. Biophys. Res. Commun. 388, 328–332 (2009).

    Article  CAS  Google Scholar 

  53. Schmid, M. et al. A methylthioadenosine phosphorylase (MTAP) fusion transcript identifies a new gene on chromosome 9p21 that is frequently deleted in cancer. Oncogene 19, 5747–5754 (2000).

    Article  CAS  Google Scholar 

  54. Pasmant, E. et al. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res. 67, 3963–3969 (2007).

    Article  CAS  Google Scholar 

  55. Yu, W. et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202–206 (2008).

    Article  CAS  Google Scholar 

  56. Agherbi, H. et al. Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence. PLoS One 4, e5622 (2009).

    Article  Google Scholar 

  57. Gonzalez, S., Pisano, D.G. & Serrano, M. Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle 7, 2601–2608 (2008).

    Article  CAS  Google Scholar 

  58. del Arroyo, A.G. et al. E2F-dependent induction of p14ARF during cell cycle re-entry in human T cells. Cell Cycle 6, 2697–2705 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to M. Rodriguez-Niedenführ and J. Rowe for substantial contributions to the project and to other members of the Molecular Oncology laboratory for helpful discussions, H. Koseki (RIKEN Research Center for Allergy and Immunology) and J. Gil (Medical Research Council Clinical Sciences Centre) for the generous gift of reagents, N. O'Reilly for help with peptide synthesis and antibody production, N. Totty for MS, C. Esnault for advice on ChIP and D. Ish-Horowicz for insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.E.M.-A. performed most of the experiments described in the manuscript and drafted the figures and text; J.N. characterized the mCbx7 complex and, together with E.B., provided the initial evidence for the interaction with MOV10; G.N.M. assisted with the gel-filtration analyses; S.B. performed the immunofluorescence; G.P. directed the project and prepared the manuscript.

Corresponding author

Correspondence to Gordon Peters.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 917 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messaoudi-Aubert, S., Nicholls, J., Maertens, G. et al. Role for the MOV10 RNA helicase in Polycomb-mediated repression of the INK4a tumor suppressor. Nat Struct Mol Biol 17, 862–868 (2010). https://doi.org/10.1038/nsmb.1824

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1824

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing