Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct observation of the myosin-Va power stroke and its reversal

Abstract

Complex forms of cellular motility, including cell division, organelle trafficking or signal amplification in the auditory system, require strong coordination of the myosin motors involved. The most basic mechanism of coordination is via direct mechanical interactions of individual motor heads leading to modification of their mechanochemical cycles. Here we used an optical trap–based assay to investigate the reversibility of the force-generating conformational change (power stroke) of single myosin-Va motor heads. By applying load to the head shortly after binding to actin, we found that, at a certain load, the power stroke could be reversed, and the head fluctuated between an actin-bound pre– and a post–power stroke conformation. This load-dependent mechanical instability might be critical to coordinate the heads of processive, dimeric myosin-Va. Nonlinear response to load leading to coordination or oscillations amongst motors might be relevant for many cellular functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single MVS1 molecules interacting with actin under load.
Figure 2: Statistical analysis of reversals and recoveries.
Figure 3: Kinetics of pre- and post-states.
Figure 4: Effect of load on a single MVS1 motor head.

Similar content being viewed by others

References

  1. Sellers, J.R. & Veigel, C. Walking with myosin V. Curr. Opin. Cell Biol. 18, 68–73 (2006).

    Article  CAS  Google Scholar 

  2. Mehta, A.D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999).

    Article  CAS  Google Scholar 

  3. Sakamoto, T., Webb, M.R., Forgacs, E., White, H.D. & Sellers, J.R. Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature 455, 128–132 (2008).

    Article  CAS  Google Scholar 

  4. Veigel, C., Wang, F., Bartoo, M.L., Sellers, J.R. & Molloy, J.E. The gated gait of the processive molecular motor, myosin V. Nat. Cell Biol. 4, 59–65 (2002).

    Article  CAS  Google Scholar 

  5. Yildiz, A. et al. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  6. De La Cruz, E.M., Wells, A.L., Rosenfeld, S.S., Ostap, E.M. & Sweeney, H.L. The kinetic mechanism of myosin V. Proc. Natl. Acad. Sci. USA 96, 13726–13731 (1999).

    Article  CAS  Google Scholar 

  7. Rosenfeld, S.S. & Sweeney, H.L. A model of myosin V processivity. J. Biol. Chem. 279, 40100–40111 (2004).

    Article  CAS  Google Scholar 

  8. Volkmann, N. et al. The structural basis of myosin V processive movement as revealed by electron cryomicroscopy. Mol. Cell 19, 595–605 (2005).

    Article  CAS  Google Scholar 

  9. Coureux, P.D., Sweeney, H.L. & Houdusse, A. Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J. 23, 4527–4537 (2004).

    Article  CAS  Google Scholar 

  10. Walker, M.L. et al. Two-headed binding of a processive myosin to F-actin. Nature 405, 804 (2000).

    Article  CAS  Google Scholar 

  11. Burgess, S. et al. The prepower stroke conformation of myosin V. J. Cell Biol. 159, 983–991 (2002).

    Article  CAS  Google Scholar 

  12. Forkey, J.N., Quinlan, M.E., Shaw, M.A., Corrie, J.E.T. & Goldman, Y.E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).

    Article  CAS  Google Scholar 

  13. Toprak, E. et al. Defocused orientation and position imaging (DOPI) of myosin V. Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).

    Article  CAS  Google Scholar 

  14. Dunn, A.R. & Spudich, J.A. Dynamics of the unbound head during myosin V processive translocation. Nat. Struct. Mol. Biol. 14, 246–248 (2007).

    Article  CAS  Google Scholar 

  15. Cappello, G. et al. Myosin V stepping mechanism. Proc. Natl. Acad. Sci. USA 104, 15328–15333 (2007).

    Article  CAS  Google Scholar 

  16. Uemura, S., Higuchi, H., Olivares, A.O., De La Cruz, E.M. & Ishiwata, S. Mechanochemical coupling of two substeps in a single myosin V motor. Nat. Struct. Mol. Biol. 11, 877–883 (2004).

    Article  CAS  Google Scholar 

  17. Shiroguchi, K. & Kinosita, K. Myosin V walks by lever action and Brownian motion. Science 316, 1208–1212 (2007).

    Article  CAS  Google Scholar 

  18. Rief, M. et al. Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl. Acad. Sci. USA 97, 9482–9486 (2000).

    Article  CAS  Google Scholar 

  19. Gebhardt, J.C.M., Clemen, A.E.M., Jaud, J. & Rief, M. Myosin-V is a mechanical ratchet. Proc. Natl. Acad. Sci. USA 103, 8680–8685 (2006).

    Article  CAS  Google Scholar 

  20. Carter, N.J. & Cross, R.A. Mechanics of the kinesin step. Nature 435, 308–312 (2005).

    Article  CAS  Google Scholar 

  21. Veigel, C., Schmitz, S., Wang, F. & Sellers, J.R. Load-dependent kinetics of myosin-V can explain its high processivity. Nat. Cell Biol. 7, 861–869 (2005).

    Article  CAS  Google Scholar 

  22. Finer, J.T., Simmons, R.M. & Spudich, J.A. Single myosin molecle mechanics-piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

    Article  CAS  Google Scholar 

  23. Veigel, C., Bartoo, M.L., White, D.C.S., Sparrow, J.C. & Molloy, J.E. The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys. J. 75, 1424–1438 (1998).

    Article  CAS  Google Scholar 

  24. Molloy, J.E., Burns, J.E., Kendrick-Jones, J., Tregear, R.T. & White, D.C.S. Movement and force produced by a single myosin head. Nature 378, 209–212 (1995).

    Article  CAS  Google Scholar 

  25. Veigel, C. et al. The motor protein myosin-I produces its working stroke in two steps. Nature 398, 530–533 (1999).

    Article  CAS  Google Scholar 

  26. Robblee, J.P., Cao, W.X., Henn, A., Hannemann, D.E. & De La Cruz, E.M. Thermodynamics of nucleotide binding to actomyosin V and VI: a positive heat capacity change accompanies strong ADP binding. Biochemistry 44, 10238–10249 (2005).

    Article  CAS  Google Scholar 

  27. Kad, N.M., Trybus, K.M. & Warshaw, D.M. Load and Pi control flux through the branched kinetic cycle of myosin V. J. Biol. Chem. 283, 17477–17484 (2008).

    Article  CAS  Google Scholar 

  28. Takagi, Y., Shuman, H. & Goldman, Y.E. Coupling between phosphate release and force generation in muscle actomyosin. Phil. Trans. R. Soc. Lond. B 359, 1913–1920 (2004).

    Article  CAS  Google Scholar 

  29. Moore, J.R., Krementsova, E.B., Trybus, K.M. & Warshaw, D.M. Myosin V exhibits a high duty cycle and large unitary displacement. J. Cell Biol. 155, 625–635 (2001).

    Article  CAS  Google Scholar 

  30. Purcell, T.J., Sweeney, H.L. & Spudich, J.A. A force-dependent state controls the coordination of processive myosin V. Proc. Natl. Acad. Sci. USA 102, 13873–13878 (2005).

    Article  CAS  Google Scholar 

  31. Huxley, A.F. & Simmons, R.M. Proposed mechanism of force generation in striated muscle. Nature 233, 533–538 (1971).

    Article  CAS  Google Scholar 

  32. Oguchi, Y. et al. Load-dependent ADP binding to myosins V and VI: implications for subunit coordination and function. Proc. Natl. Acad. Sci. USA 105, 7714–7719 (2008).

    Article  CAS  Google Scholar 

  33. Veigel, C., Molloy, J.E., Schmitz, S. & Kendrick-Jones, J. Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat. Cell Biol. 5, 980–986 (2003).

    Article  CAS  Google Scholar 

  34. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton 76–89 (Sinauer, Sunderland, Massachusetts, USA, 2001).

  35. Clemen, A.E.M. et al. Force-dependent stepping kinetics of myosin-V. Biophys. J. 88, 4402–4410 (2005).

    Article  CAS  Google Scholar 

  36. Syed, S., Snyder, G.E., Franzini-Armstrong, C., Selvin, P.R. & Goldman, Y.E. Adaptability of myosin V studied by simultaneous detection of position and orientation. EMBO J. 25, 1795–1803 (2006).

    Article  CAS  Google Scholar 

  37. Forgacs, E. et al. Kinetics of ADP dissociation from the trail and lead heads of actomyosin V following the power stroke. J. Biol. Chem. 283, 766–773 (2008).

    Article  CAS  Google Scholar 

  38. Hannemann, D.E., Cao, W.X., Olivares, A.O., Robblee, J.P. & De La Cruz, E.M. Magnesium, ADP, and actin binding linkage of myosin V: evidence for multiple myosin V-ADP and actomyosin V-ADP states. Biochemistry 44, 8826–8840 (2005).

    Article  CAS  Google Scholar 

  39. Vilfan, A. Elastic lever-arm model for myosin V. Biophys. J. 88, 3792–3805 (2005).

    Article  CAS  Google Scholar 

  40. Nyitrai, M.G.M.A. Adenosine diphosphate and strain sensitivity in myosin motors. Phil. Trans. R. Soc. Lond. B 359, 1867–1877 (2004).

    Article  CAS  Google Scholar 

  41. Nishizaka, T., Miyata, H., Yoshikawa, H., Ishiwata, S. & Kinosita, K. Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377, 251–254 (1995).

    Article  CAS  Google Scholar 

  42. Duke, T.A.J. Molecular model of muscle contraction. Proc. Natl. Acad. Sci. USA 96, 2770–2775 (1999).

    Article  CAS  Google Scholar 

  43. Shimamoto, Y., Suzuki, M. & Ishiwata, S. Length-dependent activation and auto-oscillation in skeletal myofibrils at partial activation by Ca2+. Biochem. Biophys. Res. Commun. 366, 233–238 (2008).

    Article  CAS  Google Scholar 

  44. Hudspeth, A.J. & Gillespie, P.G. Pulling springs to tune transduction—adaptation by hair-cells. Neuron 12, 1–9 (1994).

    Article  CAS  Google Scholar 

  45. Kruse, K. & Julicher, F. Oscillations in cell biology. Curr. Opin. Cell Biol. 17, 20–26 (2005).

    Article  CAS  Google Scholar 

  46. van Mameren, J., Vermeulen, K.C., Gittes, F. & Schmidt, C.F. Leveraging single protein polymers to measure flexural rigidity. J. Phys. Chem. B 113, 3837–3844 (2009).

    Article  CAS  Google Scholar 

  47. Colquhoun, D. & Sigworth, F.J. Practical analysis of records. in. Single Channel Recording (eds. Sakmann, B. & Neher, E.) 558–563 (Plenum Press, New York, USA, 1995).

Download references

Acknowledgements

We thank C. Schmidt and J. Molloy for stimulating discussions, E. Harvey for technical assistance and J. Hammer III (Laboratories of Cell Biology, National Heart, Lung, and Blood Institute, US National Institutes of Health) for kindly supplying the myosin-Va clone. We are also grateful to the UK Medical Research Council, The Royal Society UK and the US National Institutes of Health for grant support.

Author information

Authors and Affiliations

Authors

Contributions

J.R.S. expressed and purified MVS1; C.V. carried out experiments and data analysis; J.R.S. and C.V. wrote the paper.

Corresponding author

Correspondence to Claudia Veigel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1 and Supplementary Discussion (PDF 8752 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sellers, J., Veigel, C. Direct observation of the myosin-Va power stroke and its reversal. Nat Struct Mol Biol 17, 590–595 (2010). https://doi.org/10.1038/nsmb.1820

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1820

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing