Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Precise mapping of subunits in multiprotein complexes by a versatile electron microscopy label


Positional knowledge of subunits within multiprotein assemblies is crucial for understanding their function. The topological analysis of protein complexes by electron microscopy has undergone impressive development, but analysis of the exact positioning of single subunits has lagged behind. Here we have developed a clonable 80-residue tag that, upon attachment to a target protein, can recruit a structurally prominent electron microscopy label in vitro. This tag is readily visible on single particles and becomes exceptionally distinct after image processing and classification. Thus, our method is applicable for the exact topological mapping of subunits in macromolecular complexes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design of the DID–Dyn2 electron microscopy label.
Figure 2: Labeling of the Seh1 subunit within the Nup84 complex with the DID–Dyn2 electron microscopy marker.
Figure 3: Aligned class averages of unlabeled and DID–Dyn2–labeled Nup84 complex.


  1. 1

    Lührmann, R. & Stark, H. Structural mapping of spliceosomes by electron microscopy. Curr. Opin. Struct. Biol. 19, 96–102 (2009).

    Article  PubMed  Google Scholar 

  2. 2

    Ulbrich, C. et al. Mechanochemical removal of ribosome biogenesis factors from nascent 60S ribosomal subunits. Cell 138, 911–922 (2009).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Boisset, N. et al. Three-dimensional reconstruction of Androctonus australis hemocyanin labeled with a monoclonal Fab fragment. J. Struct. Biol. 115, 16–29 (1995).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Hainfeld, J.F. & Furuya, F.R. A 1.4-nm gold cluster covalently attached to antibodies improves immunolabeling. J. Histochem. Cytochem. 40, 177–184 (1992).

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Stöffler-Meilicke, M. & Stöffler, G. Localization of ribosomal proteins on the surface of ribosomal subunits from Escherichia coli using immunoelectron microscopy. Methods Enzymol. 164, 503–520 (1988).

    Article  PubMed  Google Scholar 

  6. 6

    Stroupe, M.E., Xu, C., Goode, B.L. & Grigorieff, N. Actin filament labels for localizing protein components in large complexes viewed by electron microscopy. RNA 15, 244–248 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Wagenknecht, T., Berkowitz, J., Grassucci, R., Timerman, A.P. & Fleischer, S. Localization of calmodulin binding sites on the ryanodine receptor from skeletal muscle by electron microscopy. Biophys. J. 67, 2286–2295 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Stelter, P. et al. Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex. Nat. Cell Biol. 9, 788–796 (2007).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Liang, J., Jaffrey, S.R., Guo, W., Snyder, S.H. & Clardy, J. Structure of the PIN/LC8 dimer with a bound peptide. Nat. Struct. Biol. 6, 735–740 (1999).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. & Hurt, E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 21, 387–397 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Kampmann, M. & Blobel, G. Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex. Nat. Struct. Mol. Biol. 16, 782–788 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Nagy, V. et al. Structure of a trimeric nucleoporin complex reveals alternate oligomerization states. Proc. Natl. Acad. Sci. USA 106, 17693–17698 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    van Heel, M., Harauz, G. & Orlova, E.V. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Lutzmann, M. et al. Reconstitution of Nup157 and Nup145N into the Nup84 complex. J. Biol. Chem. 280, 18442–18451 (2005).

    CAS  Article  Google Scholar 

Download references


We thank P. Bork and C. Müller for providing the facilities for transmission electron microscopy at the EMBL Heidelberg and M. Lutzmann (Institute of Human Genetics) for creating the pET24d-NUP85–SEH1 and pPROEXHtb-GST-TEV-NUP145C–SEC13-T7-NUP120 expression plasmids. K.T. is a recipient of the Kekulé grant from Fonds der Chemischen Industrie. E.H. is a recipient of grants from the Deutsche Forschungsgemeinschaft (SFB 638/B2) and Fonds der Chemischen Industrie.

Author information




D.F., P.S. and E.H. initiated the project; D.F., K.T. and P.S. designed and performed the experiments; B.B. contributed to electron microscopy image processing and discussion; E.H. supervised the project.

Corresponding author

Correspondence to Ed Hurt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 253 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Flemming, D., Thierbach, K., Stelter, P. et al. Precise mapping of subunits in multiprotein complexes by a versatile electron microscopy label. Nat Struct Mol Biol 17, 775–778 (2010).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing