Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular determinants of coupling between the domain III voltage sensor and pore of a sodium channel

Abstract

In a voltage-dependent sodium channel, the activation of voltage sensors upon depolarization leads to the opening of the pore gates. To elucidate the principles underlying this conformational coupling, we investigated a putative gating interface in domain III of the sodium channel using voltage-clamp fluorimetry and tryptophan-scanning mutagenesis. Most mutations have similar energetic effects on voltage-sensor activation and pore opening. However, several mutations stabilized the activated voltage sensor while concurrently destabilizing the open pore. When mapped onto a homology model of the sodium channel, most localized to hinge regions of the gating interface. Our analysis shows that these residues are involved in energetic coupling of the voltage sensor to the pore when both are in resting and when both are in activated conformations, supporting the notion that electromechanical coupling in a voltage-dependent ion channel involves the movement of rigid segments connected by elastic hinges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane topology of a sodium channel and a sequence comparison of the skeletal muscle sodium channel with the Shaker and Kv1.2/2.1 chimeric potassium channel.
Figure 2: Voltage-dependent conductance and fluorescence responses in the mutant sodium channels.
Figure 3: Superposition of the homology model of sodium channel domain III with the structure of the Kv1.2/2.1 chimera and mapping the prominent class I positions on the homology model.
Figure 4: Normalized G-V (blue) and F-V relationships (red) for prominent class II mutants.
Figure 5: Mapping the prominent class II mutants on to the structural model of sodium channel DIII.
Figure 6: The G-V and F-V curves upon perturbation of putative interaction pairs and mapping of the positions of an interaction pair onto the homology model of sodium channel DIII.
Figure 7: Two general models describing the coupled activation process involving the voltage sensor and pore of a voltage-dependent ion channel.

Similar content being viewed by others

References

  1. Noda, M. et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121–127 (1984).

    Article  CAS  Google Scholar 

  2. Papazian, D.M., Schwarz, T.L., Tempel, B.L., Jan, Y.N. & Jan, L.Y. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237, 749–753 (1987).

    Article  CAS  Google Scholar 

  3. Tempel, B.L., Papazian, D.M., Schwarz, T.L., Jan, Y.N. & Jan, L.Y. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237, 770–775 (1987).

    Article  CAS  Google Scholar 

  4. Yang, N., George, A.L. Jr. & Horn, R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113–122 (1996).

    Article  Google Scholar 

  5. Perozo, E., Cortes, D.M. & Cuello, L.G. Structural rearrangements underlying K+-channel activation gating. Science 285, 73–78 (1999).

    Article  CAS  Google Scholar 

  6. Armstrong, C.M. & Bezanilla, F. Currents related to movement of the gating particles of the sodium channels. Nature 242, 459–461 (1973).

    Article  CAS  Google Scholar 

  7. Glauner, K.S., Mannuzzu, L.M., Gandhi, C.S. & Isacoff, E.Y. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 402, 813–817 (1999).

    Article  CAS  Google Scholar 

  8. Cha, A., Snyder, G.E., Selvin, P.R. & Bezanilla, F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402, 809–813 (1999).

    Article  CAS  Google Scholar 

  9. del Camino, D., Holmgren, M., Liu, Y. & Yellen, G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature 403, 321–325 (2000).

    Article  CAS  Google Scholar 

  10. Holmgren, M., Smith, P.L. & Yellen, G. Trapping of organic blockers by closing of voltage-dependent K+ channels: evidence for a trap door mechanism of activation gating. J. Gen. Physiol. 109, 527–535 (1997).

    Article  CAS  Google Scholar 

  11. Horn, R. Conversation between voltage sensors and gates of ion channels. Biochemistry 39, 15653–15658 (2000).

    Article  CAS  Google Scholar 

  12. Stühmer, W. et al. Structural parts involved in activation and inactivation of the sodium channel. Nature 339, 597–603 (1989).

    Article  Google Scholar 

  13. Strong, M., Chandy, K.G. & Gutman, G.A. Molecular evolution of voltage-sensitive ion channel genes: on the origins of electrical excitability. Mol. Biol. Evol. 10, 221–242 (1993).

    CAS  PubMed  Google Scholar 

  14. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  15. Long, S.B., Tao, X., Campbell, E.B. & Mackinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007).

    Article  CAS  Google Scholar 

  16. Smith-Maxwell, C.J., Ledwell, J.L. & Aldrich, R.W. Uncharged S4 residues and cooperativity in voltage-dependent potassium channel activation. J. Gen. Physiol. 111, 421–439 (1998).

    Article  CAS  Google Scholar 

  17. Lu, Z., Klem, A.M. & Ramu, Y. Coupling between voltage sensors and activation gate in voltage-gated K+ channels. J. Gen. Physiol. 120, 663–676 (2002).

    Article  CAS  Google Scholar 

  18. Hong, K.H. & Miller, C. The lipid-protein interface of a Shaker K+ channel. J. Gen. Physiol. 115, 51–58 (2000).

    Article  CAS  Google Scholar 

  19. Lee, S.Y., Banerjee, A. & Mackinnon, R. Two separate interfaces between the voltage sensor and pore are required for the function of voltage-dependent K+ channels. PLoS Biol. 7, e47 (2009).

    PubMed  Google Scholar 

  20. Soler-Llavina, G.J., Chang, T.H. & Swartz, K.J. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker Kv channel. Neuron 52, 623–634 (2006).

    Article  CAS  Google Scholar 

  21. Labro, A.J. et al. Kv channel gating requires a compatible S4–S5 linker and bottom part of S6, constrained by non-interacting residues. J. Gen. Physiol. 132, 667–680 (2008).

    Article  CAS  Google Scholar 

  22. Bosmans, F., Martin-Eauclaire, M.F. & Swartz, K.J. Deconstructing voltage sensor function and pharmacology in sodium channels. Nature 456, 202–208 (2008).

    Article  CAS  Google Scholar 

  23. Li-Smerin, Y., Hackos, D.H. & Swartz, K.J. α-helical structural elements within the voltage-sensing domains of a K+ channel. J. Gen. Physiol. 115, 33–50 (2000).

    Article  CAS  Google Scholar 

  24. Perozo, E. Structure and packing orientation of transmembrane segments in voltage-dependent channels. Lessons from perturbation analysis. J. Gen. Physiol. 115, 29–32 (2000).

    Article  CAS  Google Scholar 

  25. Monks, S.A., Needleman, D.J. & Miller, C. Helical structure and packing orientation of the S2 segment in the Shaker K+ channel. J. Gen. Physiol. 113, 415–423 (1999).

    Article  CAS  Google Scholar 

  26. Chanda, B. & Bezanilla, F. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J. Gen. Physiol. 120, 629–645 (2002).

    Article  CAS  Google Scholar 

  27. Yarov-Yarovoy, V. et al. Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na+ channel α subunit. J. Biol. Chem. 276, 20–27 (2001).

    Article  CAS  Google Scholar 

  28. West, J.W. et al. A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. Proc. Natl. Acad. Sci. USA 89, 10910–10914 (1992).

    Article  CAS  Google Scholar 

  29. Ahern, C.A. & Horn, R. Focused electric field across the voltage sensor of potassium channels. Neuron 48, 25–29 (2005).

    Article  CAS  Google Scholar 

  30. Chanda, B. & Bezanilla, F. A common pathway for charge transport through voltage-sensing domains. Neuron 57, 345–351 (2008).

    Article  CAS  Google Scholar 

  31. Tristani-Firouzi, M., Chen, J. & Sanguinetti, M.C. Interactions between S4–S5 linker and S6 transmembrane domain modulate gating of HERG K+ channels. J. Biol. Chem. 277, 18994–19000 (2002).

    Article  CAS  Google Scholar 

  32. Ma, J.C. & Dougherty, D.A. The cation-π interaction. Chem. Rev. 97, 1303–1324 (1997).

    Article  CAS  Google Scholar 

  33. Ryzhov, V., Dunbar, R.C., Cerda, B. & Wesdemiotis, C. Cation-π effects in the complexation of Na+ and K+ with Phe, Tyr, and Trp in the gas phase. J. Am. Soc. Mass Spectrom. 11, 1037–1046 (2000).

    Article  CAS  Google Scholar 

  34. Mecozzi, S., West, A.P. Jr. & Dougherty, D.A. Cation-π interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. USA 93, 10566–10571 (1996).

    Article  CAS  Google Scholar 

  35. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  36. Hackos, D.H., Chang, T.H. & Swartz, K.J. Scanning the intracellular S6 activation gate in the shaker K+ channel. J. Gen. Physiol. 119, 521–532 (2002).

    Article  CAS  Google Scholar 

  37. Ding, S. & Horn, R. Effect of S6 tail mutations on charge movement in Shaker potassium channels. Biophys. J. 84, 295–305 (2003).

    Article  CAS  Google Scholar 

  38. Yifrach, O. & Mackinnon, R. Energetics of pore opening in a voltage-gated K+ channel. Cell 111, 231–239 (2002).

    Article  CAS  Google Scholar 

  39. Wynia-Smith, S.L., Gillian-Daniel, A.L., Satyshur, K.A. & Robertson, G.A. hERG gating microdomains defined by S6 mutagenesis and molecular modeling. J. Gen. Physiol. 132, 507–520 (2008).

    Article  CAS  Google Scholar 

  40. Ledwell, J.L. & Aldrich, R.W. Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation. J. Gen. Physiol. 113, 389–414 (1999).

    Article  CAS  Google Scholar 

  41. Brooks, B. & Karplus, M. Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 80, 6571–6575 (1983).

    Article  CAS  Google Scholar 

  42. McCammon, J.A., Gelin, B.R., Karplus, M. & Wolynes, P.G. The hinge-bending mode in lysozyme. Nature 262, 325–326 (1976).

    Article  CAS  Google Scholar 

  43. McCammon, J.A., Gelin, B.R. & Karplus, M. Dynamics of folded proteins. Nature 267, 585–590 (1977).

    Article  CAS  Google Scholar 

  44. Oi, V.T. et al. Correlation between segmental flexibility and effector function of antibodies. Nature 307, 136–140 (1984).

    Article  CAS  Google Scholar 

  45. Mao, B., Pear, M.R., McCammon, J.A. & Quiocho, F.A. Hinge-bending in L-arabinose-binding protein. The “Venus's-flytrap” model. J. Biol. Chem. 257, 1131–1133 (1982).

    CAS  PubMed  Google Scholar 

  46. Colonna-Cesari, F. et al. Interdomain motion in liver alcohol dehydrogenase. Structural and energetic analysis of the hinge bending mode. J. Biol. Chem. 261, 15273–15280 (1986).

    CAS  PubMed  Google Scholar 

  47. Auerbach, A. Gating of acetylcholine receptor channels: brownian motion across a broad transition state. Proc. Natl. Acad. Sci. USA 102, 1408–1412 (2005).

    Article  CAS  Google Scholar 

  48. Mitra, A., Tascione, R., Auerbach, A. & Licht, S. Plasticity of acetylcholine receptor gating motions via rate-energy relationships. Biophys. J. 89, 3071–3078 (2005).

    Article  CAS  Google Scholar 

  49. Purohit, P., Mitra, A. & Auerbach, A. A stepwise mechanism for acetylcholine receptor channel gating. Nature 446, 930–933 (2007).

    Article  CAS  Google Scholar 

  50. Muroi, Y. & Chanda, B. Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel. J. Gen. Physiol. 133, 1–15 (2009).

    Article  CAS  Google Scholar 

  51. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  52. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  Google Scholar 

  53. Zhorov, B.S. Vector method for calculating derivatives of energy of atom-atom interactions of complex molecules according to generalized coordinates. J. Struct. Chem. 22, 4–8 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by funds from the US National Institutes of Health (GM084140-01), the American Heart Association Scientist Development Award (0535214N) and the Shaw Scientist award to B.C. We thank M. Goldschen for help with preparing Supplementary Figure 3, K. Schuldt for excellent technical assistance and the members of the Chanda laboratory for their comments and discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.M. and M.A-.M. contributed equally to this work; Y.M. and M.A.-M. performed all the experiments and analyzed the data; S.C. created the structural model; S.C. and B.C. generated the coupling models; Y.M., M.A.-M. and B.C. wrote the paper.

Corresponding author

Correspondence to Baron Chanda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 2066 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muroi, Y., Arcisio-Miranda, M., Chowdhury, S. et al. Molecular determinants of coupling between the domain III voltage sensor and pore of a sodium channel. Nat Struct Mol Biol 17, 230–237 (2010). https://doi.org/10.1038/nsmb.1749

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1749

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing