Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STIM1 gates the store-operated calcium channel ORAI1 in vitro

Abstract

Store-operated Ca2+ entry through the plasma membrane Ca2+ release–activated Ca2+ (CRAC) channel in mammalian T cells and mast cells depends on the sensor protein stromal interaction molecule 1 (STIM1) and the channel subunit ORAI1. To study STIM1-ORAI1 signaling in vitro, we have expressed human ORAI1 in a sec6-4 strain of the yeast Saccharomyces cerevisiae and isolated sealed membrane vesicles carrying ORAI1 from the Golgi compartment to the plasma membrane. We show by in vitro Ca2+ flux assays that bacterially expressed recombinant STIM1 opens wild-type ORAI1 channels but not channels assembled from the ORAI1 pore mutant E106Q or the ORAI1 severe combined immunodeficiency (SCID) mutant R91W. These experiments show that the STIM1-ORAI1 interaction is sufficient to gate recombinant human ORAI1 channels in the absence of other proteins of the human ORAI1 channel complex, and they set the stage for further biochemical and biophysical dissection of ORAI1 channel gating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recombinant ORAI1 and STIM1 proteins used in the present study.
Figure 2: STIM1 cytoplasmic fragments interact with ORAI1 assembled in yeast membranes and with two cytoplasmic fragments of ORAI1.
Figure 3: STIM1 triggers ORAI1-dependent Ca2+ efflux from membrane vesicles of S. cerevisiae.
Figure 4: STIM1 activates ORAI1 channels in membrane vesicles from S. cerevisiae.

Similar content being viewed by others

References

  1. Feske, S. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 7, 690–702 (2007).

    Article  CAS  Google Scholar 

  2. Oh-hora, M. & Rao, A. Calcium signaling in lymphocytes. Curr. Opin. Immunol. 20, 250–258 (2008).

    Article  CAS  Google Scholar 

  3. Baba, Y. et al. Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat. Immunol. 9, 81–88 (2008).

    Article  CAS  Google Scholar 

  4. Vig, M. et al. Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat. Immunol. 9, 89–96 (2008).

    Article  CAS  Google Scholar 

  5. Parekh, A.B. & Putney, J.W. Jr. Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005).

    Article  CAS  Google Scholar 

  6. Putney, J.W. Jr. Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here). Cell Calcium 42, 103–110 (2007).

    Article  CAS  Google Scholar 

  7. Hogan, P.G. & Rao, A. Dissecting ICRAC, a store-operated calcium current. Trends Biochem. Sci. 32, 235–245 (2007).

    Article  CAS  Google Scholar 

  8. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005).

    Article  CAS  Google Scholar 

  9. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+ store depletion–triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    Article  CAS  Google Scholar 

  10. Zhang, S.L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005).

    Article  CAS  Google Scholar 

  11. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    Article  CAS  Google Scholar 

  12. Zhang, S.L. et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl. Acad. Sci. USA 103, 9357–9362 (2006).

    Article  CAS  Google Scholar 

  13. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223 (2006).

    Article  CAS  Google Scholar 

  14. Yeromin, A.V. et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226–229 (2006).

    Article  CAS  Google Scholar 

  15. Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006).

    Article  CAS  Google Scholar 

  16. Vig, M. et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr. Biol. 16, 2073–2079 (2006).

    Article  CAS  Google Scholar 

  17. Spassova, M.A. et al. STIM1 has a plasma membrane role in the activation of tore-operated Ca2+ channels. Proc. Natl. Acad. Sci. USA 103, 4040–4045 (2006).

    Article  CAS  Google Scholar 

  18. Mercer, J.C. et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J. Biol. Chem. 281, 24979–24990 (2006).

    Article  CAS  Google Scholar 

  19. Wu, M.M., Buchanan, J., Luik, R.M. & Lewis, R.S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006).

    Article  CAS  Google Scholar 

  20. Baba, Y. et al. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 103, 16704–16709 (2006).

    Article  CAS  Google Scholar 

  21. Liou, J., Fivaz, M., Inoue, T. & Meyer, T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc. Natl. Acad. Sci. USA 104, 9301–9306 (2007).

    Article  CAS  Google Scholar 

  22. Ong, H.L. et al. Relocalization of STIM1 for activation of store-operated Ca2+ entry is determined by the depletion of subplasma membrane endoplasmic reticulum Ca2+ store. J. Biol. Chem. 282, 12176–12185 (2007).

    Article  CAS  Google Scholar 

  23. Xu, P. et al. Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. Biochem. Biophys. Res. Commun. 350, 969–976 (2006).

    Article  CAS  Google Scholar 

  24. Luik, R.M., Wu, M.M., Buchanan, J. & Lewis, R.S. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J. Cell Biol. 174, 815–825 (2006).

    Article  CAS  Google Scholar 

  25. Luik, R.M., Wang, B., Prakriya, M., Wu, M.M. & Lewis, R.S. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454, 538–542 (2008).

    Article  CAS  Google Scholar 

  26. Muik, M. et al. Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J. Biol. Chem. 283, 8014–8022 (2008).

    Article  CAS  Google Scholar 

  27. Navarro-Borelly, L. et al. STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J. Physiol. (Lond.) 586, 5383–5401 (2008).

    Article  CAS  Google Scholar 

  28. Stathopulos, P.B., Li, G.Y., Plevin, M.J., Ames, J.B. & Ikura, M. Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J. Biol. Chem. 281, 35855–35862 (2006).

    Article  CAS  Google Scholar 

  29. Stathopulos, P.B., Zheng, L., Li, G.Y., Plevin, M.J. & Ikura, M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135, 110–122 (2008).

    Article  CAS  Google Scholar 

  30. Várnai, P., Tóth, B., Tóth, D.J., Hunyady, L. & Balla, T. Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 complex. J. Biol. Chem. 282, 29678–29690 (2007).

    Article  Google Scholar 

  31. Peinelt, C. et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat. Cell Biol. 8, 771–773 (2006).

    Article  CAS  Google Scholar 

  32. Soboloff, J. et al. Orai1 and STIM reconstitute store-operated calcium channel function. J. Biol. Chem. 281, 20661–20665 (2006).

    Article  CAS  Google Scholar 

  33. Strayle, J., Pozzan, T. & Rudolph, H.K. Steady-state free Ca2+ in the yeast endoplasmic reticulum reaches only 10 μM and is mainly controlled by the secretory pathway pump Pmr1. EMBO J. 18, 4733–4743 (1999).

    Article  CAS  Google Scholar 

  34. Locke, E.G., Bonilla, M., Liang, L., Takita, Y. & Cunningham, K.W. A homolog of voltage-gated Ca2+ channels stimulated by depletion of secretory Ca2+ in yeast. Mol. Cell. Biol. 20, 6686–6694 (2000).

    Article  CAS  Google Scholar 

  35. Silverman-Gavrila, L.B. & Lew, R.R. An IP3-activated Ca2+ channel regulates fungal tip growth. J. Cell Sci. 115, 5013–5025 (2002).

    Article  CAS  Google Scholar 

  36. Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–215 (1980).

    Article  CAS  Google Scholar 

  37. TerBush, D.R., Maurice, T., Roth, D. & Novick, P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996).

    Article  CAS  Google Scholar 

  38. Nakamoto, R.K., Rao, R. & Slayman, C.W. Expression of the yeast plasma membrane [H+]ATPase in secretory vesicles. A new strategy for directed mutagenesis. J. Biol. Chem. 266, 7940–7949 (1991).

    CAS  PubMed  Google Scholar 

  39. Ruetz, S. & Gros, P. Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell 77, 1071–1081 (1994).

    Article  CAS  Google Scholar 

  40. Laizé, V. et al. Functional expression of the human CHIP28 water channel in a yeast secretory mutant. FEBS Lett. 373, 269–274 (1995).

    Article  Google Scholar 

  41. Coury, L.A. et al. Reconstitution of water channel function of aquaporins 1 and 2 by expression in yeast secretory vesicles. Am. J. Physiol. 274, F34–F42 (1998).

    CAS  PubMed  Google Scholar 

  42. Huang, G.N. et al. STIM1 carboxyl-terminus activates native SOC, Icrac and TRPC1 channels. Nat. Cell Biol. 8, 1003–1010 (2006).

    Article  CAS  Google Scholar 

  43. Zhang, S.L. et al. Store-dependent and -independent modes regulating Ca2+ release-activated Ca2+ channel activity of human Orai1 and Orai3. J. Biol. Chem. 283, 17662–17671 (2008).

    Article  CAS  Google Scholar 

  44. Penna, A. et al. The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456, 116–120 (2008).

    Article  CAS  Google Scholar 

  45. Ji, W. et al. Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc. Natl. Acad. Sci. USA 105, 13668–13673 (2008).

    Article  CAS  Google Scholar 

  46. Li, Z. et al. Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation. J. Biol. Chem. 282, 29448–29456 (2007).

    Article  CAS  Google Scholar 

  47. Park, C.Y. et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136, 876–890 (2009).

    Article  CAS  Google Scholar 

  48. Derler, I. et al. Increased hydrophobicity at the N terminus/membrane interface impairs gating of the severe combined immunodeficiency-related ORAI1 mutant. J. Biol. Chem. 284, 15903–15915 (2009).

    Article  CAS  Google Scholar 

  49. Meyer, T., Wensel, T. & Stryer, L. Kinetics of calcium channel opening by inositol 1,4,5-trisphosphate. Biochemistry 29, 32–37 (1990).

    Article  CAS  Google Scholar 

  50. Palmer, A.E. et al. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem. Biol. 13, 521–530 (2006).

    Article  CAS  Google Scholar 

  51. Yuan, J.P. et al. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat. Cell Biol. 11, 337–343 (2009).

    Article  CAS  Google Scholar 

  52. Muik, M. et al. A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J. Biol. Chem. 284, 8421–8426 (2009).

    Article  CAS  Google Scholar 

  53. Kawasaki, T., Lange, I. & Feske, S. A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem. Biophys. Res. Commun. 385, 49–54 (2009).

    Article  CAS  Google Scholar 

  54. Miller, C.A. III, Martinat, M.A. & Hyman, L.E. Assessment of aryl hydrocarbon receptor complex interactions using pBEVY plasmids: expression vectors with bi-directional promoters for use in Saccharomyces cerevisiae. Nucleic Acids Res. 26, 3577–3583 (1998).

    Article  CAS  Google Scholar 

  55. Bitter, G.A., Chen, K.K., Banks, A.R. & Lai, P.H. Secretion of foreign proteins from Saccharomyces cerevisiae directed by α-factor gene fusions. Proc. Natl. Acad. Sci. USA 81, 5330–5334 (1984).

    Article  CAS  Google Scholar 

  56. Whitmore, L. & Wallace, B.A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32, W668–W673 (2004).

    Article  CAS  Google Scholar 

  57. Coury, L.A., Zeidel, M.L. & Brodsky, J.L. Use of yeast sec6 mutant for purification of vesicles containing recombinant membrane proteins. Methods Enzymol. 306, 169–186 (1999).

    Article  CAS  Google Scholar 

  58. Oh-hora, M. et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat. Immunol. 9, 432–443 (2008).

    Article  CAS  Google Scholar 

  59. Ansel, K.M. et al. Deletion of a conserved Il4 silencer impairs T helper type 1-mediated immunity. Nat. Immunol. 5, 1251–1259 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to H. Li for guidance on protein expression and purification. We thank R. Rao for S. cerevisiae strain NY17 and for advice on membrane protein expression in that sec6-4 strain, R.Y. Tsien for plasmids encoding the calcium sensors D3cpV and D4cpV, J. Cregg for advice on protein expression in P. pastoris, the Department of Neurobiology, Harvard Medical School, for use of their spectrofluorimeter and T. Rapoport for access to SEC-MALLS instrumentation. This work was supported by US National Institutes of Health grants AI40127, GM075256 and AI084167 (to A.R. and P.G.H.) and by an Irvington Fellowship from the Cancer Research Institute and a Postdoctoral Fellowship from the Leukemia and Lymphoma Society (to Y.Z.).

Author information

Authors and Affiliations

Authors

Contributions

P.G.H. set overall goals for the project and coordinated the work; Y.Z., P.M., A.R. and P.G.H. designed experiments and wrote the manuscript; Y.Z. prepared and characterized the STIM1 reagents, measured STIM-ORAI interactions and conducted the assays using mammalian cells; P.M. prepared and characterized sec6-4 ORAI1 vesicles; Y.Z. and P.M. conducted the in vitro Ca2+ flux assays; D.M. and H.T.K. developed the P. pastoris membrane-flotation assay; M.O., with Y.Z., carried out reconstitution and Ca2+-imaging experiments using STIM1−/− T cells; J.Z., with Y.Z., carried out SEC-MALLS analyses; Y.H., with Y.Z., contributed confocal microscopy; A.S. helped P.M. with construction of S. cerevisiae expression plasmids.

Corresponding author

Correspondence to Patrick G Hogan.

Ethics declarations

Competing interests

A.R. and P.G.H. are founders and scientific advisors to CalciMedica, Inc., a biotechnology company developing treatments for autoimmune and inflammatory diseases.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Data and Supplementary Methods (PDF 880 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Meraner, P., Kwon, H. et al. STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 17, 112–116 (2010). https://doi.org/10.1038/nsmb.1724

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1724

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing